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Abstract. We exhibit a subset of a finite Abelian group, which tiles the group by transla-
tion, and such that its tiling complements do not have a common spectrum (orthogonal basis
for their L2 space consisting of group characters). This disproves the Universal Spectrum
Conjecture of Lagarias and Wang [7]. Further, we construct a set in some finite Abelian
group, which tiles the group but has no spectrum. We extend this last example to the
groups Zd and Rd (for d ≥ 5) thus disproving one direction of the Spectral Set Conjecture
of Fuglede [1]. The other direction was recently disproved by Tao [12].
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1. Introduction

Let G be a locally compact Abelian group and Ω ⊆ G be a bounded open set. We call Ω
spectral if there is a set Λ of continuous characters of G which forms an orthogonal basis for
L2(Ω). Such a set Λ is called a spectrum of Ω. This paper concerns a conjecture of Fuglede
[1] (the Spectral Set Conjecture), which states that a domain Ω in Rd is spectral if and only
if it can tile Rd by translation. A set Ω tiles Rd by translation if there exists a set T ⊆ Rd

(called a tiling complement of Ω) of translates such that
∑

t∈T χΩ(x− t) = 1, for almost all
x ∈ Rd. Here χΩ denotes the indicator function of Ω.

Tao [12] has recently proved that the direction “spectral ⇒ tiling” does not hold (in
dimension 5 and higher – Matolcsi [9] has reduced this dimension to 4). Here we prove that
the direction “tiling ⇒ spectral” is also false in dimension 5 and higher.

The Spectral Set Conjecture has attracted considerable attention in the last decade, re-
vealing a wealth of connections to functional analysis, combinatorics, commutative algebra,
number theory and Fourier analysis (the papers [1, 2, 3, 4, 5, 6, 7, 8, 10, 12] and references
therein give a more or less complete account of results related to Fuglede’s conjecture). Until
Tao’s example [12] there had been many results for special cases of domains, tiling comple-
ments or spectra, all of them supporting the conjecture. (Already in [1] Fuglede showed that
the conjecture is true if either the tiling complement or the spectrum is assumed to be a
lattice.) Despite the failure of the conjecture in general, it may still be true for some rather
large natural class of domains, such as the convex domains [3].

The counterexample of Tao [12] to the “spectral ⇒ tiling” direction was based, originally,
on the existence of (real) Hadamard matrices whose size is not a power of 2. Such matrices
immediately lead to counterexamples in appropriate finite groups, due to divisibility reasons.
The main difficulty in disproving the “tiling ⇒ spectral” direction is the lack of natural
necessary conditions (which would play the role of divisibility) for a set in order to be
spectral.
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In order to produce a counterexample our strategy is as follows. The Spectral Set Con-
jecture makes sense in finite groups as well, and we first disprove the direction “tiling ⇒
spectral” in an appropriate finite group in §3. This we do by first finding a counterexample
to the Universal Spectrum Conjecture of Lagarias and Wang [7]. (This conjecture states, in
a finite group, that if a set T can tile the group with tiling complements T1, . . . , Tn then these
sets are all spectral and share a common spectrum. Note that this conjecture is stronger
than the original Spectral Set Conjecture.) In §4, using the example found in the finite group
setting, we produce a counterexample in the group Zd and finally in Rd, where the Spectral
Set Conjecture was originally stated.

In §2 we give necessary background material and describe notation.

2. Preliminaries

Suppose Ω is a bounded open set in a locally compact Abelian group G. We will only be
interested in finite groups, Zd and Rd and the forhtcoming considerations apply to them.

We call Ω spectral if L2(Ω) has an orthogonal basis

Λ ⊆ Ĝ

of characters (Ĝ denotes the dual group of G [11]). The set Λ is then called a spectrum for Ω,
and (Ω, Λ) is called a spectral pair in G. In the groups we are dealing with the characters are
functions of the type x → exp(2πi〈ν, x〉), where ν takes values in an appropriate subgroup
of the torus Td (if G is discrete) or in Euclidean space.

The inner product and norm on L2(Ω) are

〈f, g〉Ω =

∫
Ω

fg, and ‖f‖2
Ω =

∫
Ω

|f |2.

If λ, ν ∈ Ĝ we have

〈λ, ν〉Ω = χ̂Ω(ν − λ).

which gives

Λ is an orthogonal set ⇔ ∀λ, µ ∈ Λ, λ 6= µ : χ̂Ω(λ− µ) = 0

For Λ to be complete as well we must in addition have (Parseval)

(1) ∀f ∈ L2(Ω) : ‖f‖2
2 =

1

|Ω|
∑
λ∈Λ

|〈f, λ〉|2.

For the groups we care about (finite groups, Zd and Rd) in order for Λ to be complete it is

sufficient to have (1) for any character f ∈ Ĝ, since then we have it in the closed linear span
of these functions, which is all of L2(Ω). An equivalent reformulation for Λ to be a spectrum
of Ω is therefore that

(2)
∑
λ∈Λ

|χ̂Ω|2(x− λ) = |Ω|2,

for almost every x ∈ Ĝ. For finite sets Ω (the group is finite or Zd) for a set Λ ⊆ Ĝ to be a
spectrum it is necessary and sufficient that Λ satisfy the two conditions:

(a) Λ− Λ ⊆ {χ̂Ω = 0} ∪ {0} (orthogonality), and
(b) #Λ = #Ω (maximal dimension).
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For subsets Ω ⊆ Rd, when the spectra are infinite, we fall back on (2).
If f ≥ 0 is in L1(G) and T ⊆ G we say that f tiles with T at level ` if

∑
t∈T f(x− t) = `

for almost all x ∈ G. We denote this by “f + T = `G” and we call T a tiling complement of
f . If f = χΩ is the indicator function of some set then we just write Ω + T = `G instead of
χΩ + T = `G, and, in this case, if ` is not specified it assumed to be 1.

In the finite group case it is immediate to show that f + T is a tiling of G if and only if

(3)
{

f̂ = 0
}
∪ {χ̂T = 0} ∪ {0} = Ĝ.

There are analogs of this relationship that hold in the infinite case as well but we will not
need these here (see [5]).

If f is a continuous function we write Z(f) for its zero set. For a set A we write ZA for
the zero set of the Fourier Transform of its indicator function Z(χ̂A).

The starting point of our considerations is a generalization of the composition construction
appearing in [9], Proposition 2.1.

Proposition 2.1. Let G be a finite Abelian group, and H ≤ G a subgroup. Let T1, T2, . . . Tk ⊂
H be subsets of H such that they share a common tiling set in H; i.e. there exists a set
T ′ ⊂ H such that Tj + T ′ = H is a tiling for all 1 ≤ j ≤ k. Consider any tiling decomposi-
tion S+S ′ = G/H of the factor group G/H, with #S = k, and take arbitrary representatives
s1, s2, . . . sk from the cosets of H corresponding to the set S. Then the set Γ := ∪k

j=1(sj +Tj)
is a tile in the group G.

Proof. The proof is simply the observation that for any system of representatives S̃ ′ :=
{s′1, s′2, . . . } of S ′ the set T ′ + S̃ ′ is a tiling set for Γ in G. �

Despite the proof being obvious, this construction seems to include a large class of tilings
and it leads to some interesting examples.

When taking T1 = T2 = · · · = Tk = T we (essentially) get back the ’tiling part’ of
the statement of Proposition 2.1 in [9]. The drawback of that statement, in producing a
counterexample to the Spectral Set Conjecture, is that the same construction applies to
spectral sets as well (see the ’spectral part’ of Proposition 2.1 in [9]). The essence of the
generalization here comes from allowing differrent sets T1, . . . Tk to be used.

Let us see the analogous construction for spectral sets.

Proposition 2.2. Let G be a finite Abelian group, and H ≤ G a subgroup. Let T1, T2, . . . Tk ⊂
H be subsets of H such that they share a common spectrum in Ĥ; i.e. there exists a set L ⊂ Ĥ
such that L is a spectrum of Tj for all 1 ≤ j ≤ k. Consider any spectral pair (Q,Q′) in
the factor group G/H, with #Q = k, and take arbitrary representatives q1, q2, . . . qk from the
cosets of H corresponding to the set Q. Then the set Γ := ∪k

j=1(qj + Tj) is spectral in the
group G.

Proof. We do not give a detailed proof of this statement, as we will not directly use it in
the forthcoming arguments. Let us give an outline of the proof only. For any lj ∈ L there

exists a gj ∈ Ĝ such that gj|H = lj. Take such characters g1, . . . , gr (where r = #Tj).
Also, the characters of G which take constant values in cosets of H can be identified with

elements of Ĝ/H. Take such characters v1, v2, . . . , vk corresponding to the elements of Q′.
Then the spectrum of Γ is the set Λ = gjvl (1 ≤ j ≤ r ,1 ≤ l ≤ k). The calculations
proving orthogonality proceed along the same line as in [9], Proposition 2.1. Completeness
then follows from the cardinality of Λ.
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�

The main point of the two preceding constructions is that they are not entirely “compati-
ble”. That is, one can hope to find sets T1, . . . Tk ⊂ H sharing a common tiling complement
T ′ but not sharing a common spectrum L. This would be a counterexample to the Universal
Spectrum Conjecture. Then the construction of Proposition 2.1 will lead to a set Γ which
tiles G, but there is nothing to guarantee that Γ is spectral in G (in fact, we will find a way
to guarantee that Γ is not spectral). This is exactly the route we will follow in §3.

3. Counterexamples in finite groups

Here we follow the path outlined in §2 in order to produce an example of a set Γ in a finite
group G, such that Γ is a tile but is not spectral in G.

The first step is to find a counterexample to the Universal Spectrum Conjecture. We are
looking for a finite group G and a tile T ′ in G such that the tiling complements T1, . . . Tk of
T ′ do not posess a common spectrum L.

For a given T ′ ⊂ G, one sufficient condition for the existence of a universal spectrum L,
as pointed out in [8], is to ensure that

(4) #L ·#T ′ = #G and L− L ⊂ Zc
T ′ .

Indeed, any tiling complement Tj of T ′ must satisfy ZTj
⊃ Zc

T ′ \ {0}, therefore condition (4)
ensures that L is a spectrum of Tj. (We do not know whether condition (4) is also necessary
for the existence of a universal spectrum, as suggested in [8] in the remarks following Theorem
3.1.) Therefore, when trying to construct a set T ′ having no universal spectrum, one must
exclude the existence of a set L satisfying (4).

Notice, that if L satisfies (4) then L is not only a universal spectrum for all tiling com-
plements of T ′, but also a universal tiling set of all spectra of T ′. Indeed, for any spectrum

Q of T ′ we have Q−Q ⊂ ZT ′ ∪ {0} therefore (L− L) ∩ (Q−Q) = {0} and #L ·#Q=#Ĝ,

which ensures that L + Q = Ĝ is a tiling.
Having this observation in mind, one way to exclude the possibility of (4) is to choose a

set T ′ which posseses a particular spectrum Q which does not tile Ĝ (but recall that T ′ itself
must tile G otherwise the notion of universal spectrum is meaningless). In other words, in

some group Ĝ take a spectral set Q which does not tile Ĝ (such examples already exist, cf.
[12], [9]) and choose any spectrum of Q as a candidate for T ′ ⊂ G. However, the examples

in [12] and [9] are such that #Q does not divide #Ĝ, therefore any choice for T ′ is also
doomed by divisibility reasons, because T ′ cannot tile G either. We circumvent this problem
by increasing the size of the group G.

The ideas above are summarized in the following theorem, which disproves the Universal
Spectrum Conjecture. (In what follows, the notation Zn refers to the cyclic group Z/nZ.)

Theorem 3.1. Consider G = Z5
6 and E = {0, e1, e2, . . . e5} where ej = (0, . . . 1, . . . , 0)>.

The set E tiles G but has no universal spectrum in Ĝ.

Proof. We identify the elements of G and Ĝ with column and row vectors, respectively.
The existence of a universal spectrum L is equivalent to the conditions #L = 64 and

L− L ⊂ (
⋂

j ZTj
) ∪ {0}, where Tj are all the tiling complements of E.
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Consider the set K ⊂ Ĝ (cf. [9, Theorem 3.1]) consisting of the rows of the following
matrix

(5) K :=


0 0 0 0 0
0 2 2 4 4
2 0 4 4 2
2 4 0 2 4
4 4 2 0 2
4 2 4 2 0


(We remark, that K is a spectrum of E. In fact, this follows from the fact that the matrix

(6) K ′ :=
1

3


0 0 0 0 0 0
0 0 1 1 2 2
0 1 0 2 2 1
0 1 2 0 1 2
0 2 2 1 0 1
0 2 1 2 1 0


is log-Hadamard (i.e. the matrix Ujk = exp(2πiK ′

jk) is orthogonal.). We will not use the
fact that K is a spectrum, but it reflects the considerations preceding the theorem.)

Observe that K is contained in the subgroup H ≤ Ĝ of row-vectors having even coordinates
only. However, #H = 35 and #K = 6, therefore K cannot tile H and, consequently, it

cannot tile Ĝ either. (It is easy to see that if a set tiles a group then it tiles the subgroup
it generates.) It is also easy to check that the set K −K consists of 0 and only coordinate
permutations of the vector (0, 2, 2, 4, 4). (In fact K−K contains all coordinate permutations
of (0, 2, 2, 4, 4), but we do not need this.)

Next we show that E admits some tiling complements T0, . . . T14, which have no common
spectrum.

Take the vector v0 = (1, 2, 3, 4, 5)> and define a group homomorphism φ : G → Z6 by

φ(x) := v>
0 x (mod 6).

Then φ is one-to-one on E, and the image of E is the whole group Z6. Therefore T0 = ker φ is
a tiling complement for E. Notice that Zc

T0
contains all multiples of v0

>, and, in particular, it

contains 2v0
> = (2, 4, 0, 2, 4), and 4v0

> = (4, 2, 0, 4, 2). By appropriate permutations of the
coordinates of v0 we can define vectors v1, . . . ,v14 and corresponding tiling sets T0, . . . , T14

in such a way that (
⋂14

j=0 ZTj
) ∩ (K −K) = {0}. Therefore, a set L satisfying #L = 64 and

L − L ⊂ (
⋂14

j=0 ZTj
) ∪ {0} cannot exist because in that case L + K would be a tiling of Ĝ,

and we already know that K is not a tile. �

Having found a counterexample to the Universal Spectrum Conjecture, we use the con-
struction of §2 to exhibit the failure of the Spectral Set Conjecture in finite groups.

Theorem 3.2. Consider G2 = Z5
6 ×Z15 and Γ =

⋃14
j=0(fj + T̃j), where fj = (0, 0, 0, 0, 0, j)>

and T̃j are the sets appearing in Theorem 3.1 extended by 0 as the last coordinate. Then Γ
is a tile in G2 but it is not spectral.

Proof. In this proof the notation Ã always refers to a set A ⊂ G = Z5
6 (or, A ⊂ Ĝ = Z5

6 as
row vectors) extended by 0 as the last coordinate.
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The fact that Γ is a tile follows from Proposition 2.1 or can easily be seen directly: the
tiling complement of Γ is Ẽ.

To see that Γ is not spectral, note first that the set K̃ is contained in the subgroup H̃ (

K and H are defined in the proof of Theorem 3.1), therefore it cannot tile Ĝ2 because of
divisibility reasons.

Any spectrum Q of Γ must satisfy #Q = #Γ = 64 · 15 and Q−Q ⊂ ZΓ ∪ {0}. Consider

the vector k̃1 = (0, 2, 2, 4, 4, 0) ∈ K̃ − K̃. We show that k̃1 /∈ ZΓ. Indeed,

χ̂Γ(k̃1) =
14∑

j=0

χ̂Tj
(k1) > 0

because each term is nonnegative (each Tj being a subgroup in G), and at least one term is

non-zero by the construction of Theorem 3.1. The same argument shows that k̃j /∈ ZΓ for
all kj ∈ K −K.

Therefore, any spectrum Q of Γ must satisfy (Q − Q) ∩ (K̃ − K̃) = {0}, which, since

#Q ·#K̃ = #Ĝ2, implies Q+K̃ = Ĝ2. This is a contradiction since K̃ is not a tile in Ĝ2 �

4. Transition to Zd and Rd

We now describe a general transition scheme from the finite group setting to Zd and Rd.
As a result we find a set in R6, which is a finite union of unit cubes (placed at points with
integer coordinates), which tiles R6 by translations but is not spectral.

First we prove this in the group Zd.

Theorem 4.1. Let n = (n1, . . . , nd) ∈ Zd and consider a set A ⊂ G = Zn1 × · · · × Znd
.

Write

(7) T = T (n, k) = {0, n1, 2n1, . . . , (k − 1)n1} × · · · × {0, nd, 2nd, . . . , (k − 1)nd},
and define A(k) = A + T . Then, for large enough values of k, the set A(k) ⊂ Zd is spectral
in Zd if and only if A is spectral in G.

Proof. The ’if’ part of the theorem is essentially contained in [9, Proposition 2.1] (but we
will not need this direction here).

To see the ’only if’ part, observe first that χA(k) = χA∗χT , hence, writing Z(f) = {f = 0},
we obtain

Z(χ̂A(k)) = Z(χ̂A) ∪ Z(χ̂T ).

Elementary calculation of χ̂T (it is a cartesian product) shows that it is a union of “hyper-
planes”

(8) Z(χ̂T ) =

{
ξ ∈ Td : ∃j ∃ν ∈ Z, k does not divide ν, such that ξj =

ν

knj

}
.

Define the group

H =

{
ξ ∈ Td : ∀j ∃ν ∈ Z such that ξj =

ν

nj

}
.

which is the group of characters of the group G and does not depend on k. Observe that
H + (Q−Q) does not intersect Z(χ̂T ), where

Q =

[
0,

1

kn1

)
× · · · ×

[
0,

1

knd

)
.
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Assume now that S ⊆ Td is a spectrum of A(k), so that #S = #A(k) = rkd, if r = #A.

Define, for ν ∈ {0, . . . , k − 1}d, the sets

Sν =

{
ξ ∈ S : ξ ∈ (

ν1

kn1

, . . . ,
νd

knd

) + Q + (
m1

n1

, . . . ,
md

nd

), for some m ∈ Zd

}
.

Since the number of the Sν is kd and they partition S, it follows that there exists some µ
for which #Sµ ≥ r.

We also note that, if k is sufficiently large, then any translate of Q may contain at most
one point of the spectrum. The reason is that Q−Q contains no point of Z(χ̂T ) (for any k)
and no point of Z(χ̂A) for all large k (as χ̂A(0) > 0).

Observe next that if x, y ∈ Sµ then

x− y ∈ H + (Q−Q)

= H +

(
− 1

kn1

,
1

kn1

)
× · · · ×

(
− 1

knd

,
1

knd

)
and that this set does not intersect Z(χ̂T ) (from (8)). It follows that for all x, y ∈ Sµ we
have x− y ∈ Z(χ̂A).

Let k be sufficiently large so that for all points h ∈ H for which χ̂A(h) 6= 0 the rectangle
h + Q−Q does not intersect Z(χ̂A). It follows that if x, y ∈ Sµ then x−y ∈ h + (Q−Q),
where h ∈ Z(χ̂A).

For each x ∈ Td define λ(x) to be the unique point z whose j-th coordinate is an integer
multiple of 1

knj
for which x ∈ z + Q. If x, y ∈ Sµ it follows that λ(x)− λ(y) ∈ H ∩ Z(χ̂A).

Define now Λ =
{
λ(x) : x ∈ Sµ

}
(and shift Λ to contain 0, so that Λ ⊂ H). It is obvious

that #Λ ≥ r and Λ− Λ ⊆ Z(χ̂A) ∪ {0}, therefore Λ is a spectrum of A.
�

Non-spectral tiles can be pulled from Zd to Rd using the following.

Theorem 4.2. Suppose A ⊆ Zd is a finite set and Q = [0, 1)d. Then A is a spectral set in
Zd if and only if A + Q is a spectral set in Rd.

Proof. Write E = A + Q. Then χ̂E = χ̂Aχ̂Q and Z(χ̂E) = Z(χ̂A) ∪ Z(χ̂Q). By calculation
we have

Z(χ̂Q) =
{
ξ ∈ Rd : ∃j such that ξj ∈ Z \ {0}

}
.

Now suppose Λ ⊂ Td is a spectrum of A as a subset of Zd. Viewing Td as Q we observe
that the set Z(χ̂A) is periodic with Zd as a period lattice. Define now S = Λ + Zd. The
differences of S are either points which are on Z(χ̂A) (mod Zd) or points with all integer
coordinates. In any case these differences fall in Z(χ̂E), hence

∑
s∈S |χ̂E(x− s)|2 ≤ (#A)2.

Furthermore, the density of S is #A which, along with the periodicity of S, implies that
|χ̂E|2 + S is a tiling of Rd at level (#A)2. That is, S is a spectrum for E.

Conversely, assume S is a spectrum for E as a subset of Rd. It follows that the density
of S is equal to |E| = #A, hence there exists k ∈ Zd such that k + Q contains at least #A
points of S. Call the set of these points S1, and observe that the differences of points of S1

are contained in Q−Q = (−1, 1)d, and that Q−Q does not intersect Z(χ̂Q). It follows that
the differences of the points of S1 are all in Z(χ̂A), and, since their number is #A, they form
a spectrum of A as a subset of Zd. �

In conclusion we have proved the following.
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Theorem 4.3. In each of the groups Zd and Rd, d ≥ 5, there exists a set which tiles the
group by translation but is not spectral

Proof. It is easy to see that if A is our non-spectral tile in the finite group Z5
6×Z15 then the

set A(k) ⊆ Z6 which appears in Theorem 4.1 is a tile as well, and by that Theorem it is not
spectral. Using Theorem 4.2 we can construct a set with these properties in R6 by adding a
unit cube at each point.

To get down to dimension 5, notice that the construction in Theorem 3.2 can be repeated
verbatim in the group G3 = Z5

6×Z17 instead of the group Z5
6×Z15. (Just repeat the set T15

two more times.) But now we view G3 as the group Z4
6 × Z6·17 (as 6 and 17 are coprime).

Theorems 4.1 and 4.2 now give examples in dimension 5.
If d ≥ 6 then the set of Z6 which is tiling but not spectral will still be such in Zd when

viewed as a subset of that in the obvious way. The preservation of tiling property is obvious,
and one can easily show that the existence of any spectrum in Td implies the existence of a
spectrum in T6. We go to Rd again using Theorem 4.2. �
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