
FUNCTIONS TILING WITH SEVERAL LATTICES
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Abstract. We study the problem of finding a function f with “small support”
that simultaneously tiles with finitely many latticesΛ1, . . . ,ΛN in d-dimensional
Euclidean spaces. We prove several results, both upper bounds (constructions)
and lower bounds on how large this support can and must be. We also study
the problem in the setting of finite abelian groups, which turns out to be the
most concrete setting. Several open questions are posed.
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1. Introduction to the Steinhaus tiling problem and its variants

The classical Steinhaus tiling problem concerns tiling by translations only.
This is the version of tiling where we have a set (the tile), say in the plane,
and we are translating it around in such a way that every point of the plane
is covered exactly once by these translates. In the Steinhaus tiling problem
we are seeking a tile that can tile simultaneously with many different sets of
translations. The most important case is: can we find a subset of the plane
which can tile (by translations) with all rotates of the integer lattice Z2?

There are two major variations of the Steinhaus problem: the measurable
and the set-theoretic case. In the measurable case we demand our tile to be a
Lebesgue measurable subset of Rd and we are, at the same time, relaxing our
requirements and are allowing a subset of measure 0 of space not to be covered
exactly once by the translates of the tile. In the set-theoretic case we allow the
tile to by any subset and we typically ask that every point is covered exactly
once, allowing no exceptions.

In this paper we are dealing with the measurable Steinhaus tiling problem.
Here the tile is not necessarily a set but can be a measurable function. Tiling
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now means that this function f : Rd → R is translated around by a count-
able set of translates T ⊆ Rd and these copies add up to a constant, almost
everywhere ∑

t∈T

f (x − t) = const., for almost every x ∈ Rd.

Clearly tiling by a function is a generalization of tiling by a set.
Satisfying the requirements of the Steinhaus tiling problem with a function

instead of with a set is generally much easier. The problem becomes inter-
esting only if one asks for further properties that this function should have.
Therefore we strive to find a function with small support, or to prove that the
support of such a function must necessarily be large. Asking for f to have a
small support goes against f having the ability to tile space, especially with
nany different sets of translations T. The reason is that for f to tile by trans-
lations with T its Fourier transform must contain a rich set of zeros [19]. This
set of zeros must be able to support the Fourier transform of the measure
δT =

∑
t∈T δt (which encodes the set of translations). By the well known uncer-

tainty principle in harmonic analysis a rich set of zeros for f̂ usually requires
(in various different senses) a large support for f [12].

1.1. Previous results. Komjáth [23] answered the Steinhaus question in the
affirmative in R2 when tiling by all rotates of the set B = Z × {0} showing
that there are such Steinhaus sets (but such a set A cannot be measurable
as was shown recently in [21]). Sierpinski [28] showed that a bounded set
A which is either closed or open cannot have the lattice Steinhaus property
(that is, intersect all rigid motions of Z2 at exactly one point – another way
to say that A tiles precisely with all rotates of Z2). Croft [7] and Beck [1]
showed that no bounded and measurable set A can have the lattice Steinhaus
property (but see also [24]). Kolountzakis [17, 16] and Kolountzakis and Wolff
[22] proved that any measurable set in the plane that has the measurable
Steinhaus property must necessarily have very slow decay at infinity (any such
set must have measure 1). In [22] it was also shown that there can be no
measurable Steinhaus sets in dimension d ≥ 3 (tiling with all rotates ρZd,
where ρ is in the full orthogonal group) a fact that was also shown later by
Kolountzakis and Papadimitrakis [20] by a very different method. See also
[5, 25, 6, 29]. Kolountzakis [18] looks at the case where we are only asking
for our set to tile with finitely many lattices, not all rotates as in the original
problem, which we are also doing in this paper. In a major result Jackson and
Mauldin [14, 13] proved the existence of Steinhaus sets in the plane which
tile with all rotates of Z2 (not necessarily measurable). Their method does not
extend to higher dimension d ≥ 3. See also [26, 15]. It was also shown in [21]
that a set A which tiles with all rotates of a finite set B cannot be measurable.

1.2. Structure of this paper. In §2 we study the common tiles f for a finite
collection of N lattices in Rd. The emphasis is on the dependence of the size of
the common tile on N.

In §2.1 we study the diameter of common tiles, a study that had begun in
[22]. We show in Theorem 2.3 that there are cases of lattices for which we have
a linear lower bound (matching the linear upper bound arising from convolu-
tion tiles) for the diameter of the support of any common tile.
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In §2.2 we study the volume of the common tiles instead of their diameter.
In Theorem 2.4 we show that convolution tiles with nonnegative convolution
factors necessarily have volume ≳ Nd for their support. In Theorem 2.5 we
give a simple non-trivial lower bound for the length for a convolution tile of
two factors.

Then in §2.3 we turn away from lattices satisfying genericity conditions (e.g.
having a direct sum) to lattices which satisfy many algebraic relations. We
show that this helps greatly with the diameter and volume of the support of
their common tiles (construction in Theorem 2.8 for d ≥ 2 and in Theorem 2.9
for d = 1).

In §3 we study common tiles of lattices without the measurability assump-
tion. For two lattices of the same volume in Rd these were known to always
exist [18]. We show in Theorem 3.3 that the condition of equal volume is actu-
ally necessary for the existence of a common fundamental domain, which had
remained an open question in [18].

In §4 we study the problem of finding a common tiling function for subgroups
of a finite abelian group, trying now to minimize the size (cardinality) of its
support.

In Theorem 4.2 we show that we can reduce the problem to the case where
the two subgroups have no intersection, i.e. we reduce the study to direct
products of groups. Theorem 4.3 solves the problem exactly in the special case
when the size of one group divides the size of the other. We then connect the
problem to the problem of the support of copulas (a generalization of doubly
stochastic matrices to the non-square case) as they have been studied in com-
binatorics and statistics and we deal with some special cases in Lemma 4.5.
Finally in Theorem 4.6 we exploit this connection to produce, in some special
cases again, a common tile for two lattices inRwhich is slightly better in terms
of its length than the convolution common tile.

Several open questions are posed throughout.

2. The diameter and volume of soft multi-lattice tiles

2.1. Convolution tiles and their diameter. It has long been known [1, 17]
that for a function f ∈ L1(Rd) to tile with all rotates of Zd it is necessary and
sufficient that f̂ vanishes on all spheres centered at the origin that contain
any integer lattice point. This easily implies that for d ≥ 2 any such function
must have unbounded support and even more quantitative lower bounds for
the the rate of decay of f near infinity [17, 16, 22].

This is no longer true if one restricts the number of rotates of Zd that we
demand f tiles with. It makes sense to generalize the question and ask for a
function f which tiles with a given set of lattices Λi ⊆ R, i = 1, 2, . . . ,N, and
such that

diam supp f

is small. We remind [22] that for f to tile with the lattices Λi it is necessary
and sufficient for f̂ to vanish on the dual lattices Λ∗i , except at 0. (The dual
lattice of a lattice Λ = AZd, width A being a non-singular d × d matrix, is the
lattice Λ∗ = A−⊤Zd.)
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Therefore we have to find a function f , with support of small diameter, such
that f̂ is 0 on each Λ∗i \ {0}. The first thing that comes to mind is to take f to be
a convolution. It takes a moment to verify that if f tiles with a set of translates
T then so does g ∗ f for any g ∈ L1(Rd). One can either verify this by checking
the definition of tiling for g ∗ f or observe that tiling is a condition that can be
checked on the Fourier side [19] and ĝ ∗ f = ĝ · f̂ has an even richer set of zeros
that f̂ .

So, since f̂ has to vanish on the dual lattices Λ∗i \ {0} we can take
(2.1) f = 1D1 ∗ 1D2 ∗ · · · ∗ 1DN ,

where Di is a fundamental parallelepiped of Λi. Since Di + Λi is a tiling it
follows that 1̂Di vanishes on Λ∗i \ {0} and that f vanishes on their union and
hence tiles with all Λi. This can be slightly generalized by taking, instead if
the indicator functions 1Di any function fi that tiles with Λi

(2.2) f = f1 ∗ f2 ∗ · · · fN.

The following observation was already made in [22] in the case fi = 1Di.

Theorem 2.1. If Λ1, . . . ,ΛN are lattices in Rd of volume c1 ≤ volΛi and f =
f1 ∗ f2 ∗ · · · ∗ fN then
(2.3) diam supp f ≥ CdN.

Proof. By the pigeonhole principle on can pick a coordinate axis, say the first
one, such that at least N/d of the functions fi have supp fi project onto the first
coordinate axis on a set of diameter ≥ ad, where ad is a constant that depends on
d only. For if not then we would be able to find a fi whose support is contained in
a cube of arbirarily small side. Since fi tiles with Λi its support has to contain
at least one element from almost all of the cosets of Λi in Rd. This contradicts
our assumed lower bound on volΛi.

The Tichmarsh convolution theorem [8] says that
co supp (A + B) = co supp A + co supp B,

where co denotes the convex hull of a set and A,B are two arbitrary integrable
functions of compact support.

If we write ϕ for the convolution of those fi that we collected in the first
paragraph of this proof and ψ for the remaining fi then f = ϕ ∗ ψ and

co supp f = co suppϕ + co suppψ,

which implies that
(2.4) diam supp f = diam co supp f ≥ diam co suppϕ ≥ diamπ1co suppϕ,

where π1 denotes projection onto the first coordinate axis.
Again by the Titchmarsh convolution theorem, π1co suppϕ is the sum of the

π1co supp fi for those fi that participate in the definition of ϕ and for these we
know that

diamπ1co supp fi ≥ diamπ1supp fi ≥ ad.

But for any two one-dimensional sets E,F ⊆ R we have diam (E+ F) = diam E+
diam F, which implies, using (2.4), that

diam supp f ≥ ad

d
N,
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as we had to prove.
□

If the lattices Λi satisfy some “roundness” assumption, e.g. if each Λi is
assumed to have a fundamental domain of diameter bounded independent of
N (as in the important case when all the lattices are rotates of Zd), then the
convolution tile (2.1) clearly has diameter which is also at most C ·N.

On the other hand we have the following rather general lower bound for the
diameter of the support [22] assuming only a certain genericity assumption
(2.5) on the Λi.
Theorem 2.2. If Λ1, . . . ,ΛN ⊆ Rd, d ≥ 1, are lattices of volume equal to 1 such
that
(2.5) Λi ∩Λ j = {0} for all i , j,
then if f tiles with all these lattices we have
(2.6) diam supp f ≥ CdN1/d.

The main question is therefore:
Question 1. Can the gap between the lower bound (2.6) and the linear up-
per bound O(N) achievable by the convolution tile (2.1) (in the case of “round”
lattices, having fundamental domains bounded in diameter by a constant) be
bridged?

Are there examples of latticesΛi, i = 1, 2, . . . ,N, satisfying (2.5) and a non-zero
function f ∈ L1(Rd) that tiles with all Λi and such that

diam supp f = o(N)?

In other words, do there exist collections of lattices for which a common tile
f can be found which is diameter-wise more efficient than the convolution con-
struction (2.1)?

Our next result is that for some collections of lattices the linear upper bound
cannot be improved. The lattices given are both “round” (have a fundamen-
tal domain bounded independent of N) and satisfy the genericity assumption
(2.5). There are however collinearities so, in some sense, this is not a generic
situtation.
Theorem 2.3. For d ≥ 1 and for each N there are lattices Λ1, . . . ,ΛN ⊆ Rd, of
volume 1, such that if f ∈ L1(Rd),

∫
f , 0, tiles with all of them then

diam supp f ≥ CdN.

Proof. We give the proof in the case d = 2. It works with obvious changes in all
dimensions d > 2 and it is even easier in dimension d = 1.

Take Λ∗i to be generated by the two vectors
ui = (0, ai), vi = (1/ai, 0),

where the numbers a1, . . . , aN are linearly independent over Q and
0.9 < ai < 1.

If f tiles with all Λi then f̂ vanishes on all points of the form
(0, k · ai), i = 1, 2, . . . ,N, k ∈ Z \ {0}.
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Since all these points are different it follows that the density of zeros on the
y-axis is ≥ C ·N. This implies that

diam suppπ2( f ) ≥ C ·N
(say, by Jensen’s formula) where π2( f ) is the one-variable function

π2( f )(y) =
∫
R

f (x, y) dx.

(This is not an identically zero function by our assumption on the integral of
f .) This is turn implies

diam supp f ≥ C ·N.

□

2.2. Common tiles whose support has small volume. Another measure
of smallness of the support is its volume. Can we construct a common tile f
for the lattices Λi such that

∣∣∣supp f
∣∣∣ is small?

In the case of f given by (2.1) it is clear that

supp f = D1 +D2 + . . . +DN.

To keep things concrete let us assume that all |Di| = 1 in (2.1) (unimodular
lattices). Then the Brunn-Minkowski inequality [10] says that∣∣∣supp f

∣∣∣ = |D1 + · · · +DN| ≥
(
|D1|1/d + · · · + |DN|1/d

)d
≥ Nd.

This lower bound ∣∣∣supp f
∣∣∣ ≥ CNd

clearly holds also for functions of the form

(2.7) f = f1 ∗ f2 ∗ · · · ∗ fN, fi ≥ 0,

where for all i = 1, 2, . . . ,N we assume that the nonnegative function f tiles
with Λi.

We have proved:

Theorem 2.4. For any collection of lattices Λ1, . . . ,ΛN in Rd of volume at least
1 and any common tile f for them of the form

f = f1 ∗ f2 ∗ · · · ∗ fN, fi ≥ 0,

with fi tiling with Λi, we have ∣∣∣supp f
∣∣∣ ≥ Nd.

But when the functions f are signed (or complex) we only have

supp f ⊆ supp f1 + · · · supp fN,

not necessarily equality, which brings us to the next question.

Question 2. If f is given by (2.7), is it true that

(2.8)
∣∣∣supp f

∣∣∣ ≥ CNd?
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If one requires that the lattices Λ1,Λ2, ...,ΛN ⊂ Rd have the same volume,
say 1, and the sum Λ∗1+Λ∗2+ ...+Λ∗N of their dual lattices is direct, then, by [18,
Theorem 2], they possess a measurable common almost fundamental domain
E (generally unbounded). In this case, |E| = vol (Λi) = 1. So then one can take
f = 1E, which tiles with all Λi, i = 1, 2, ...,N, with |supp f | = |E| = 1.

Motivated by the previous observation, but now dropping the equal volume
assumption, we ask the following:
Question 3. Consider the lattices Λ1,Λ2, ...,ΛN, with 1

2 ≤ vol (Λi) ≤ 2. Is there
a function f that tiles with all Λi, such that

|supp f | = o(Nd)?

In the simplest case in dimension d = 1, and for two lattices only, a basic
question seems to be to ask if the convolution (2.7) is best in terms of the
length of the support. Here we can offer a simple lower bound assuming a
nonnegative function.
Theorem 2.5. Suppose the nonnegative f : R → R≥0 is measurable and tiles
with both Λ1 = Z and with Λ2 = αZ, where α ∈ (0, 1):

(2.9)
∑
n∈Z

f (x − n) = 1,
∑
n∈Z

f (x − nα) =
1
α
, for almost every x ∈ R.

Then

(2.10)
∣∣∣supp f

∣∣∣ ≥ ⌈1
α

⌉
α ≥ 2α.

Remark 2.6. If we assume the first equation in (2.9) then the constant in the
second equation is forced to be 1/α. This is because

∫
f = 1 (from the first equa-

tion), so repeating f at a set of translates of density 1/α will give a constant
(assuming it tiles) at that level.
Remark 2.7. Notice that if α is just a little less than 1 then (2.10) gives a lower
bound of 2α, which shows that the convolution 1[0,1] ∗ 1[0,α] is almost optimal in
this case, having support of size 1 + α.

But if, on the other hand, α is just over 1/2 then the lower bound is just over
1 but the convolution upper bound is just over 3/2, a considerable gap.

Proof. From the first equation in (2.9) it follows that f (x) ≤ 1 for almost every
x. For the second equation to be true it therefore follows that for almost every
x ∈ R there are at least ⌈1/α⌉ different values of n ∈ Z such that f (x − nα) >
0. Using this for almost all x ∈ [0, α) (which ensures that for different x the
locations x − nα are also different) gives (2.10). □

Question 4. What is the least possible length of the support of f for a nonneg-
ative f that tiles with both Z and αZ? See Remark 4.7 for a special case.

2.3. Allowing for lattices with many relations. If we have N lattices
Λ1, . . . ,ΛN ⊆ Rd

we can find a function that tiles with them all, namely the function f in (2.1).
If our lattices are assumed to each have a fundamental domain bounded by
∼ 1 then diam supp f = O(N), and this cannot be improved for functions f
arising from (2.1). We show here that we can choose the lattices Λ j so that
a common tiling function exists which is much more tight than that, tighter
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even than what Theorem 2.2 imposes. Of course our lattices will not satisfy
the genericity condition (2.5) of Theorem 2.2, but will satisfy a lot of relations
(their intersection will be a large lattice, in terms of density).

Fix a large prime p and consider the group Zd
p. Any nonzero element g of

this group generates a cyclic subgroup of order p. It follows that Zd
p has

pd − 1
p − 1

∼ pd−1 =: N

different cyclic subgroups. For each such subgroup G, which we now view as a
subset of {0, 1, . . . , p − 1

}d, consider the lattice
ΛG = (pZ)d + G,

which contains the lattice Λ = (pZ)d and has volume

volΛG =
vol (pZ)d

|G| = pd−1 = N.

The function f = 1[0,p)d, [0, p)d being a fundamental domain of Λ, tiles with Λ
and, therefore, with any larger group, so f is a common tile of all ΛG.

In order to make the volume of the ΛG equal to 1 we shrink everything by
N1/d:

Λ′G = N−1/dΛG, f ′(x) = f (N1/dx).
So we have ∼ N lattices Λ′G of volume 1 and a common tile f ′ for them with

diam supp f ′ = diam supp f ·N−1/d =
√

d pN−1/d =
√

d N
1

d−1−
1
d =
√

d N
1

d(d−1) .

We have proved:

Theorem 2.8. In dimension d ≥ 2 and for arbitrarily large N we can find N
lattices of volume 1 and a common tile f for them with

diam supp f = Od

(
N

1
d(d−1)
)
,

and, consequently, with ∣∣∣supp f
∣∣∣ = Od

(
N

1
d−1

)
.

Question 5. Derive a lower bound for diam supp f , for f tiling withΛ1, . . . ,ΛN ⊆
Rd and with f ≥ 0 (or just

∫
f > 0) under no algebraic conditions for the lattices

Λ j, assuming only that volΛ j ∼ 1.

The construction that we used to prove Theorem 2.8 gives nothing in dimen-
sion d = 1. Yet, we can prove that, if we allow relations among the lattices, we
can achieve diam supp f = o(N) in dimension 1 as well.

Let us start by defining

λ j =
1

N + j
, Λ j = λ jZ, ( j = 1, 2, . . . ,N).

We will first construct a function f which tiles with all the Λ j, j = 1, 2, . . . ,N,
such that

diam supp f = o(1).
The Fourier transform of such an f must vanish on the dual lattices

Λ∗j = λ
−1
j Z = (N + j)Z, ( j = 1, 2, . . . ,N)



FUNCTIONS TILING WITH SEVERAL LATTICES 9

except at 0. Write

U =
N⋃

j=1

(N + j)Z \ {0}.

By a result of Erdős [9] U, the set of integers which are divisible by one of the
integers in {N + 1,N + 2, . . . , 2N}, has density tending to 0 with N. Tenenbaum
[30] has given the estimate that this density is at most

(2.11) 1

logδ−o(1) N
,

where δ = 0.086071 · · · is an explicit constant.
It is an important result of Beurling [2] that if Λ is a uniformly discrete set

of real numbers of upper density ρ then for any ϵ > 0 we can find a continuous
function f , not identically zero, supported by the interval [0, ρ + ϵ] such that
f̂ (λ) = 0 for all λ ∈ Λ. We can even ask that f̂ (0) = 1 if 0 < Λ. By Tenenbaum’s
estimate (2.11) we can take ρ = log−δ+o(1) N and the set U, being a set of integers
and thus uniformly discrete, satisfies the assumptions of Beurling’s theorem,
so there is a function f supported in the interval [0, log−δ+o(1) N], with integral
1, such that f̂ = 0 on U. It follows that f tiles with all Λ j.

We now scale by a factor of N

f ′(x) = f (x/N), Λ′j = NΛ j, diam supp f ′ = O(N log−δ+o(1) N)

and obtain the first half of the following theorem.

Theorem 2.9. We can find N lattices Λ j ⊆ R of with volΛ j ∼ 1 and a function
f with

∫
f > 0 and supported in an interval of length

N
logδ−o(1) N)

which tiles with all Λ j.
Furthermore, for any ϵ > 0 any such function f must have

diam supp f ≳ϵ N1−ϵ.

Arguing similarly we can also prove the lower bound for diam supp f in The-
orem 2.9. If we assume that f tiles with all Λ j = λ jZ, with, say, 1 ≤ λ j ≤ 2,
j = 1, 2, . . . ,N, then f̂ vanishes on

N⋃
j=1

λ−1
j Z \ {0}.

If this set is large then Jensen’s formula implies that diam supp f is also large.
It was proved in [11, Theorem 1.1, special case ℓ = n] that, for any ϵ > 0, the
above union of arithmetic progressions contains at least cϵN2−ϵ points in [0, 2N].
By Jensen’s formula then we have diam supp f ≳ϵ N1−ϵ and this completes the
proof of Theorem 2.9.

Question 6. Can we ensure f ≥ 0 in the first half of Theorem 2.9?
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3. The common fundamental domain problem without measurability

In [18] the following theorem was proved in §3.2.

Theorem 3.1. If Λ0, . . . ,Λn are lattices in Rd of the same volume and with the
sumΛ0+Λ1+ · · ·+Λn being direct then there is a bounded common fundamental
domain F for all these lattices.

Remark 3.2. No measurability is claimed for F and the set F constructed in [18]
is not measurable.

The question was left open in [18] whether the equal volume assumption
was necessary. This assumption is obviously necessary if we ask for a measur-
able tile as the volume of the tile equals the volume of each lattice it tiles with.
But there is no a priori reason for this requirement to hold if we cannot mea-
sure volumes, as with tiles that are not necessarily measurable. But, we show
here that, indeed it is necessary, by giving a pair of lattices, with no common
elements, which have different volumes and have no bounded common funda-
mental domain.

Theorem 3.3. Let Λ1 = Zd and Λ2 = αZd, with α irrational and d ≥ 1. Then
there is no bounded set F ⊆ Rd which consists of exactly one representative from
each coset of each Λi, i = 1, 2.

Proof. We give the proof in dimension d = 1 for clarity, as it is essentially the
same for all d. Without loss of generality we take α > 1.

As explained in [18, Proof of Theorem 1] it is enough to show that Λ1 and Λ2
do not have a bounded common fundamental domain in the group

G = Λ1 + Λ2 = {m + nα : m,n ∈ Z}.

Suppose F is just such a bounded common fundamental domain

F = {mi − niα : i = 1, 2, . . .} ⊆ [−M,M].

For F to be a fundamental domain it must contain precisely one point in the
set k + αZ and one point in the set Z + kα, for all k ∈ Z. By renumbering then
we can write

F = {m − nmα : m ∈ Z}.
Let now R > 0 be large and consider the following set of values for m:

(3.1) − R ≤ m ≤ R.

For such values of m and from the presumed bound

|m − nmα| ≤M

we have the bounds

(3.2) − R +M
α

≤ nm ≤
R +M
α

.

As R→∞ the number of values of m allowed by (3.1) are ∼ 2R in number. The
number of the corresponding values of n allowed by (3.2) is ∼ 2R/α, which is
strictly smaller if R is large since we have taken α > 1. This is a contradiction
as there must be exactly one nm for each m and all the nm’s are different. □
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4. The problem in finite abelian groups

Suppose we have a finite abelian group G and two subgroups G1,G2 of the
same index

n = [G : G1] = [G : G2].
We can ask whether we can find a common fundamental domain for G1,G2 in
G, i.e. a set of n elements

F =
{
g1, . . . , gn

}
which tiles with both G1 and G2. This always exists, even in the non-abelian
case, if properly defined, see e.g. [3].

If we drop the equal index assumption we can still ask for a function f defined
on G which tiles with both subgroups:
(4.1) ∀x ∈ G :

∑
g1∈G1

f (x − g1) = |G1|,
∑

g2∈G2

f (x − g2) = |G2|.

The question we are interested in here is:

Given G,G1,G2 how small can the size of the support of f be?

Under the assumption of equal index the answer to the above question is
that, since we can find a common fundamental domain of G1,G2 in G [18], the
size of the support of f can be as small as [G : G1] = [G : G2]. Of course it
cannot be smaller than that. But once we drop the equal index assumption
then the only general construction we know is the convolution of the indicator
functions of the fundamental domains Di of Gi:
(4.2) f = c1D1 ∗ 1D2 ,

which gives, with c = |G|
|D1|·|D2| ,

f ∗ 1G1 = c1D2 ∗ 1D1 ∗ 1G1 = c1D2 ∗ 1G = c|D2| = |G1|,
and similarly for f ∗1G2. But the support of f in (4.2) can be quite large, a priori
as large as |D1| · |D2|.

From now on we restrict our functions f to be nonnegative and normalized
as shown in (4.1). We also usually restrict our tiles to be nonnegative functions.
Definition 4.1. If G1,G2 are subgroups of the finite abelian group G we write

SG
G1,G2

= min
{∣∣∣supp f

∣∣∣ : where f : G→ R≥0, f ∗ 1G1 = |G1|, f ∗ 1G2 = |G2|
}
.

It is always the case that
SG

G1,G2
≥ [G : Gi], (i = 1, 2).

Observe that if G1,G2 have a common fundamental domain F in G then
SG

G1,G2
= |F|.

The following result says that we can always restrict our study to the case
of G1 ∩ G2 being trivial. In other words we may assume from now on that G is
the direct sum of G1 and G2.
Theorem 4.2. If G1,G2 ⊆ G are finite abelian groups and

Γ = G/(G1 ∩ G2), Γi = Gi/(G1 ∩ G2), (i = 1, 2)

then
(4.3) SG

G1,G2
= SΓΓ1,Γ2

.
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Proof. In what follows Γ or Γi may denote either the quotient group or an arbi-
trary but fixed set of coset representatives of the subgroup G1 ∩ G2.

Let f : G→ R≥0 satisfy

|Gi| = f ∗ 1Gi = ( f ∗ 1G1∩G2) ∗ 1Γi , (i = 1, 2).

If supp f is minimal it follows from the above representation that supp f has at
most one point in each (G1 ∩ G2)-coset, as we can always collect all the “mass”
of f contained in one coset to one point of the coset without affecting f ∗1G1∩G2.

Define F : Γ→ R≥0 by

F(γ) =
1

|G1 ∩ G2|
∑

g∈G1∩G2

f (γ + g) =
1

|G1 ∩ G2|
f ∗ 1G1∩G2(γ).

It follows, under the assumption that
∣∣∣supp f

∣∣∣ is minimal, that∣∣∣supp F
∣∣∣ = ∣∣∣supp f

∣∣∣.
We also have, for i = 1, 2,

F ∗ 1Γi =
1

|G1 ∩ G2|
f ∗ 1G1∩G2 ∗ 1Γi =

1
|G1 ∩ G2|

f ∗ 1Gi =
|Gi|

|G1 ∩ G2|
= |Γi|.

It follows that
SΓΓ1,Γ2

≤ SG
G1,G2

.

To prove the reverse inequality we start with a function F : Γ→ R≥0 satisfying

F ∗ 1Γi = |Γi|, (i = 1, 2)

and define f : G→ R≥0 by taking f (x) to be

|G1 ∩ G2| · F(x + G1 ∩ G2)

at precisely one point x in each (G1 ∩ G2)-coset, and in all other points of the
coset we take it to be 0.

It follows that
∣∣∣supp f

∣∣∣ = ∣∣∣supp F
∣∣∣, and we also have, for i = 1, 2, and viewing

F as a function on G (constant on (G1 ∩ G2)-cosets),

f ∗ 1Gi = f ∗ 1G1∩G2 ∗ 1Γi = |G1 ∩ G2| · F ∗ 1Γi = |G1 ∩ G2| · |Γi| = |Gi|.
This concludes the proof of the reverse inequality and the Theorem.

□

Let G = G1 × G2 from now on. The following theorem is the best understood
case.

Theorem 4.3. If G = G1 × G2 and |G1| divides |G2| then

(4.4) SG
G1,G2

= [G : G1] = |G2|.

Proof. Enumerate the two subgroups arbitrarily as

G1 =
{
g1

1, . . . , g
1
m

}
, G2 =

{
g2

1, . . . , g
2
n

}
,

with n = km, k ≥ 1. Take f = |G1|1F where the set F is constructed by taking
sums of the elements of G2 with the “corresponding” elements of G1 (but the
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elements of G1 have to be repeated k times each). So F consists of the sums

g1
1 + g2

1, g1
2 + g2

2, . . . , g
1
m + g2

m,

g1
1 + g2

m+1, g1
2 + g2

m+2, . . . , g
1
m + g2

m+m

g1
1 + g2

2m+1, . . . , g
1
m + g2

2m+m

. . .

It is easy to see that F is a fundamental domain for G1 and that

f ∗ 1G1 = |G1|, f ∗ 1G2 = k|G1| = |G2|.

Finally
∣∣∣supp f

∣∣∣ = |G2|, which proves the Theorem as we always have SG
G1,G2

≥
|G2|. □

It is clear now that in studying the problem in the group G = G1 × G2 the
group structure is irrelevant and, writing m = |G1| and n = |G2|, the problem is
to find a nonnegative real matrix

A ∈ (R≥0)m×n

with row sums all equal to n and column sums all equal to m, and with as small
a support (non-zero entries) as possible.

Matrices of this type or, rather, the matrices 1
mnA, and, more generally, mul-

tivariate distributions with uniform marginals, are called copulas in statistics
and have been studied extensively [27]. They can be used to “isolate” the mar-
ginal distributions of a general multivariate distribution from the dependence
part of distribution.

Definition 4.4. Write A(m,n) for the set of all such m × n matrices (with non-
negative entries and all row sums equal to n and all column sums equal to m)
and

S(m,n) = min
{∣∣∣supp A

∣∣∣ : A ∈ A(m,n)
}
.

In this notation Theorem 4.3 says that

S(m, km) = km, if m, k ∈N.

In what follows we use [4], where the structure of the matrices in A(m,n) of
minimal support is described up to permutation of rows and columns (these
operations obviously leave A(m,n) unchanged and also do not alter the size of
the support of each matrix).

That the situation changes radically if m does not divide n can be seen, for
example, by the following.

Lemma 4.5. If k ≥ 1, 1 ≤ r < m, then

S(m, km + r) ≥ (k + 1)m.

If r = 1 we have
S(m, km + 1) = (k + 1)m.

Proof. Column sums are equal to m, so none of the entries is > m. Since row
sums are equal to km + r it follows that we have at least k + 1 non-zero terms
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in each of the m rows. This shows the lower bound S(m, km + r) ≥ m(k + 1). To
show the next claim we check that the m × (km + 1) matrix

m





1

k︷ ︸︸ ︷
m · · ·m · · · · · ·

1 · · ·
k︷ ︸︸ ︷

m · · ·m · · ·

· · · · · · · · ·

1 · · · · · ·
k︷ ︸︸ ︷

m · · ·m

︸                                    ︷︷                                    ︸
km+1

has constant row and column sums. Since its support has size (k + 1)m, which
is the minimum possible by the first part of the Lemma, we are done. □

Question 7. What is the true value of S(m, km + r) when 1 < r < m?

The construction given in Lemma 4.5 can be transfered to the real line as
follows.

Theorem 4.6. If k ≥ 1, 1 ≤ r < m, and Λ1 = mZ, Λ2 = (km + 1)Z then there
exists a measurable F : R→ R≥0 which tiles R with both Λ1 and Λ2 and has∣∣∣supp F

∣∣∣ = (k + 1)m.

Remark 4.7. Notice that (k + 1)m is 1 less than the size of the support that
we would get had we used the convolution (2.7) 1[0,m] ∗ 1[0,km+1]. Therefore the
convolution tile is not optimal in terms of its length, at least for the lattices
mZ and (km + 1)Z.

Proof. We can view the function f constructed in the second part of Lemma
4.5 as a function on the group Zm×Zn, with n = km+1. Since m and km+1 are
coprime this group is isomorphic to the cyclic group Zmn and we can view our
function f as being defined on Zmn and tiling with both subgroups < m > and
< n >, of size n and m respectively, therein (here < g > denotes the subgroup
generated by g):

∀x ∈ Zmn :
∑

g∈<n>

f (x − g) = m,
∑

g∈<m>

f (x − g) = n.

This is the same as tiling Z (now < n >= nZ, < m >= mZ)

∀x ∈ Z :
∑

g∈<n>

f (x − g) = m,
∑

g∈<m>

f (x − g) = n.

Finally, defining F = f ∗ 1[0,1], we obtain tilings of R:

∀x ∈ R :
∑

g∈<n>

F(x − g) = m,
∑

g∈<m>

F(x − g) = n.

All that remains is to observe that
∣∣∣supp F

∣∣∣ = (k + 1)m.
□
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