Internat. Math. Res. Notices, 1996, 11

A new estimate for a problem of Steinhaus

Miuat, N. KorounNTzakis!
School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA
E-mail: kolount@math.ias.edu

March 1996

Abstract

Steinhaus asked whether there exists a subset of the plane which, no matter
how translated and rotated, always contains exactly one point with integer
coordinates. It is still unknown if there exist sets with the Steinhaus property.

Using harmonic analysis we prove that if a measurable set S C R? satisfies

fS |:13|%+E dz < oo, for some € > 0, then it cannot have the Steinhaus property.
0. Introduction
0.1 A problem of Steinhaus. Steinhaus [8, problem 59] asked whether there is a

planar set S which, no matter how translated and rotated, always contains exactly
one point with integer coordinates.

Definition 1 A set S C R? has the Steinhaus property if for every x € R? and for

) cosf —sinf
every rotation Ag = we have

sinf cosf
# (220 (45 +2)) =1, (1)
where AgS +x ={Ags+z: s€S5}.

It is still unknown whether such a set exists.

0.2 Let S C R? and denote by 1g its indicator function. Let also 445 denote the
set S rotated by 8. The Steinhaus property is clearly equivalent to the statement:

Ve € [0,27), Vz € R?: Z 14,5(z —n)=1. (2)
neZ?

Otherwise stated, a set S has the Steinhaus property if and only if it is a fundamental
domain (i.e. contains exactly one element of each coset) of the groups A4Z? for all
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f. Yet another way to say it is that Ay.5 tiles the plane if translated at the locations
Z?, and this is true for all 4.

0.3 In this paper we restrict ourselves to measurable § C R? and we only demand
that
VO € ©, for almost every 2 € R* 1 Y~ 1y,5(z—n) =1, (3)
neZ?2

where ©® C [0,27) is dense in [0,27), and “almost every” is taken in the sense
of Lebesgue measure (the exceptional set of 2’s may depend on #). It is known
that several classes of sets S cannot have property (3), which we shall also call the
Steinhaus property from now on. The spirit of the following results is to prove that
the Steinhaus property is incompatible with fast decay of the set S outside of large
disks or strips.

Sierpiniski [9] first proved that a set which is bounded and either open or closed
cannot have the Steinhaus property. Croft [2] and Beck [1] proved the same of any
set which is bounded and measurable. (Several variations of the problem have been
investigated by Komjdth [7] from a rather different point a view.) Croft’s approach
is more direct and geometric. Beck is using harmonic analysis. Beck’s method was
simplified and extended by the author [6]. In [6] it was proved that if the measure
of the set

S0 {z € R ¢ [(a,u)] > K) (4)

decays like exp(— K R? logl/2 R), for some large constant K > 0 and some unit vector
u € R?%, then S cannot have the Steinhaus property.

0.4 New result. Here we develop the harmonic analysis method even more to
obtain that any set .5 for which

/ |ac|%'|'E dz < co, for some € > 0, (5)
S

cannot have the Steinhaus property (|z| denotes the Euclidean norm of the vector
z € R?).

0.5 The problem in the Fourier domain. Notice that any measurable Steinhaus

set must have measure 1. The harmonic analysis approach is based on the following
simple lemma. (The definition of the Fourier transform used in this paper is

fer= [ e e o,

for f € LY(R"), n =1,2.)



Lemma 1 Let S C R? be measurable of measure 1. Then S satisfies (3) if and
only if the Fourier transform 1g of the indicator function 1g vanishes on all circles

centered at the origin that contain a lattice point (a point with integer coordinates).

One can easily prove this Lemma if one notices that the function which appears in
(3) is a function in L'(R?/Z?) whose non-constant Fourier coefficients vanish (see
[6] for the complete proof). Notice that, as a corollary of the Lemma, (3) is satisfied
for a dense set © of orientations if and only if it is satisfied for © = [0, 27).

The circles of Lemma 1 are exactly those with radius of the form (m? 4 n?)'/?,
where m,n € Z. By an old result of Landau [3] the number of those circles with
radius at most R is well known to be ~ cR* log_l/2 R, as B — oo, where ¢ is a
constant.

0.6 The argument in [1, 6] is as follows. Define f : R — C to be the restriction of
15 along the line L spanned by the unit vector « € R?. The function f is then the
Fourier transform of the projection of 15 onto L, that is of the function

g:R—=R, g¢g(t)= /R 1s(tu + zut) dz. (6)

To make the argument clear, assume that S is bounded. Clearly then g has compact
support and therefore f = g is an entire function which satisfies (as a function of a
complex argument )

|F(2)] < Crexp(Cylz]), as |z — oc.

Jensen’s formula [5, p. 82] then implies that f(z) has at most C'3R zeros in the disk
{z: |z| < R}, as R — oo, which is clearly incompatible with the fact that f has at
least as many zeros as many circles of radius (m2+n2)1/2 the line L intersects, that is
~ cR? log_l/2 R. The most that can be said with this approach [6] is that, for K > 0
sufficiently large, the area of the set in (4) cannot decay like exp(—K R?log/? R) if
the set S is to have the Steinhaus property.

1. Slow decay for Steinhaus sets

1.1 We shall prove the following theorem.

Theorem 1 [f S C R? is measurable and
/S|:C|ﬁ dr < 0o, for some 3 > &, (7)

then S does not have the Steinhaus property (3).



Notation. Let ag, k = 1,2,..., be the sequence of the positive numbers of the type
(m? + n2)1/2, m,n € Z, in increasing order, so that a; = 1,a; = v/2,a3 = 2, etc.
Let also d; = agy1 — ax, k > 1, be the sequence of the gaps between the a;’s. The
letter C' will denote an arbitrary positive constant, not necessarily the same in all
its occurences. For f: R — C, 0 < a < 1, define

1llge = sup LW =S,

z#y ly — 2|*

1.2 Number-theoretic facts. According to the theorem of Landau mentioned in

§0.5 we have

ap ~ CkY?log!* k. (8)
And it is a rather elementary fact (but still the best of its kind that we know) that
0 < Ca'? < k™YY og™ 8k, as k — . (9)

We shall also use the following result of Hooley [4]:

For any v € [0, %) we have

> (afy —a}) < Calogh=D/2g, (10)
a2, <z
Hooley’s result implies
Z 5 < 20—/ 2npy/a=1/2, (11)
2"<aj , <2nH!

for any v € (0, 2).
1.3 Holder functions. We shall need the following lemma.
Lemma 2 For f € L'(R), 0 < a < 1, we have
7], <© [1erisl de. (12)

Proof. Write
A= [ lel1re) de
We have for A > 0

F(e+h) = f()

[ ey emmi e -y g
J 1@ |e2% — 1] ag

Joon ),
|é|<1/h |é|>1/h

L+ Is.

IN



Notice that ‘e“Qm‘hi - 1‘ < 2mh|£|]. Then

1 o o
n<on [ @I de <omho— [ RO Iel” de < 2mahe,
|€]<1/h l€]<1/h
e &
I <2 | f(€)] o d¢ < 2Ah7,
lE]>1/h

which completes the proof of the Lemma. O

1.4 For a measurable set S C R? with the Steinhaus property define the function f
to be the restriction of 15 on a line £ spanned by the unit vector u € R?

JiR—C, f(t)=15(tu),

and notice that f vanishes at the points +ay, £ > 1 (Lemma 1). We first prove an
inequality for such functions on the line.

Lemma 3 Let f : R — C wvanish at the points tay, k > 1, and assume that
f € C3(R). We have then, for + < a <1,

/ e f(2)| dz < C.,
R

f(S))

(13)

ca’

It is the rapid decay of the gaps d; that makes (13) possible.

Proof. It is clearly sufficient to prove (13) for real valued f. Furthermore, it suffices
to prove the inequality for the half line

/Om o f(2)| dz < C., (14)

f(3)|

ca’

Write ag)) = ag, for each k. By Rolle’s theorem in each interval of the type
(a,(go),agﬂz]),k > 1, there is a point, call it agﬁl), at which f’ vanishes. Similarly
in every interval of the type (ag),ag_gl),k > 1, there is a point agf) at which f(2)
vanishes, etc. We so define the points a,(j),k > 1, at which the i-th derivative of f
vanishes, for ¢+ < 3.

By our construction we have agj"_l) - agj) < agj}rl - agj). This implies

| o)
0<al) —ar <3 by,

J=0

for i < 3, where C(7) is a function of 7 only. Define

d = ‘ak+0(i) - flk‘-



It follows that dy < C'(i) max{dy,...,dr4c()} and, since we only consider 7 < 3, we
conclude that di behaves essentiaﬂy like (5k, that is we have

dp < Ck=Y*1og=' 8k, (15)
and, the corrsponding inequality to (11),

S < Catmg/i, (16)

2n§“i+1<2n+1

for any v € [0, 2).
We have for i <3, k > 1,

Ak41 Tk41
[ @l < o [ 5@ da
ap ak
{lk+1 r ,
(Ik+1/ /(0) f'(y)| dy dx

a1
“k“/ /(o) /u 1

appr dit' df Hf

A

IA

IA

dw dz---dy dz

IA

since all the regions of integration are subsets of [a,(j),ag_l] C [ak,ar + di] and
a |l £(0)
[FO@w)| < g £ .-
Adding up for £ =1,2,..., we get

| lefta)] da < (Z ak+ld;;+1+“) | (17)
a1 k=1
But the series in the right hand side of (17) is finite for i = 3, @ > %. Indeed
Z appdittte < con/ipt/ Z d2+1+a_’ydz, by (8),
2n<aj , <2nt! 2m<aj <2t
o ol
x ) d, by (15),
mga? | <ontt
< Cn TR =041y (16),
]

and for i+ a > 1, we can always find v € [0, ) that makes 5 —7—a —~ < 0, which
guarantees the convergence of the series in ‘rhe right hand side of (17).



The inequality [ |zf(z)| dz < C,
cludes the proof of (14) and the Lemma.O

Ji& can be proved likewise. This con-
COL

1.5 Proof of Theorem 1. Assume that S C R? has the Steinhaus property and
satisfies [ 12| dz < o, for some 3 > 2. Write ug = (cos8,sin ) and also write
ITy1g for the projection of 15 on the line spanned by ug (see (6) for the definition).
Notice that for all 8

[ el 1)@ de = [ Jto,u0)l” do < [ Jaf? do < ox.
R S S

An immediate consequence of this is that the function R — R, z — fg(wug),
is three times continuously differentiable, for every 6, being the one-dimensional
Fourier transform of Il51g, and the third derivative has finite C#~3 norm (notice
$—3 > 1). This function also vanishes at the points +ay, (the radii of the circles
centered at the origin that go through a lattice point) according to Lemma 1.

The only way in which we use the fact that 1g is an indicator function is to
observe that its Fourier transform cannot be absolutely integrable, 15 being discon-
tinuous. We have thus

.y

R2
/F/ ‘xfg(mua)‘ dz df
0 JR

Cﬁ/
0

But, by Lemma 2, for any function ¢ € L'(R) we have H %@(m)”oﬁ_g < C)‘mﬁw(m))‘l.

Therefore, remembering that z — ﬂ(mue) is the Fourier transform of 131, we get

IN

df, by Lemma 3.
Ccp=3

d® —~
ﬁlg(mue)

00 = //|m|ﬁ(ﬂgls)(x)dm df
0 R

/ /|<x,u9>|ﬁ du df
0 S
7r/ z|? de,

S

a contradiction, and the proof is complete.O

IN

1.6 Remark. Even without using Hooley’s result (10) one can still prove that any
Steinhaus set S must necessarily have [ |2[*T dz = oo, for any € > 0. Just using
inequality (9) one can prove, in place of Lemma 3, the inequality [g |zf(z)| dz <

C. Hf(4)H06’ for any € > 0 (this corresponds to y = 1 in (10)).
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