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Abstract. We are looking at families of functions or measures on the torus which are spec-
ified by a finite number of parameters N. The task, for a given family, is to look at a small
number of Fourier coefficients of the object, at a set of locations that is predetermined and
may depend only on N, and determine the object. We look at (a) the indicator functions of
at most N intervals of the torus and (b) at sums of at most N complex point masses on the
multidimensional torus. In the first case we reprove a theorem of Courtney which says that
the Fourier coefficients at the locations 0, 1, . . . ,N are sufficient to determine the function (the
intervals). In the second case we produce a set of locations of size O(N logd−1 N) which suffices
to determine the measure.
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1. Introduction

Assume that the function f belongs to a given k-parameter explicit family of functions.
Can we recover f by looking at k (or, at least, not many more than k) of its Fourier coeffi-
cients? This situation is often called “a signal with a finite rate of innovation” in the engi-
neering literature [24]. We are particularly interested in families where the dependence on
the parameters is non-linear.

The recovery of a function by not too many of its Fourier coefficients may be viewed as a
problem in the general field of sparse representation (see, e.g., [1]). The specific rules that
apply to this paper are the following:

• We consider functions or measures on the torus T = R/Z or Td, d ∈ N. The classes
of functions we examine have a finite number of degrees of freedom whose number
is constrained by the parameter N. For instance we might consider sums of point
masses on T with the number of points being at most N.
• We seek an a priori known finite set Ω = ΩN of Fourier coefficients (a subset of Z or
Zd) which are assumed to be known for our class of functions. The set Ω is allowed
to depend on N and on nothing else.
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• The aim is to show that the mapping f → f̂ ↾Ω is one to one. Though our proofs
can often be turned into algorithms for the recovery of f we do not concern ourselves
with matters of numerical stability or efficiency.

We deal with two problems in this paper.

(1) Intervals in T.
Our function f is the indicator function of the union of at most N open intervals on

T. Courtney [2] has shown that such a function is determined by its Fourier coeffi-
cients at the locations 0, 1, . . . ,N. We give a new proof of this fact which is completely
elementary (Courtney’s proof uses Blaschke products and conformal mapping). We
further discuss the problem of whether functions of this class are determined by
different sets of Fourier coefficients.

We need to emphasize here that, apart from Courtney [2] this problem has not
been considered elsewhere. There are papers [24] where one recovers a function
on T which is piecewise constant (or even piecewise a polynomial) with the correct
number of samples (roughly equal to the number of degrees of freedom) but all these
methods fail to take into account the fact that the function only takes two values (0
or 1) and will accordingly use a number of samples that is larger than the minimum
by at least const.N samples. The “extreme” nonlinearity of this problem (not only
in allowing variable nodes in the decomposition of T, but also in the values of the
function) does not seem to make it amenable to the usual methods such as Prony’s
method, if one wants to use the minimal number of samples (or close to the minimal).

This we do in §2.
(2) Point masses in Td.

We examine the class of measures which are sums of at most N complex point
masses on Td. Using the corresponding question in dimension 1 (solvable with the
so-called Prony’s method) we show an explicit set of locationsΩ such that the Fourier
coefficients on Ω determine the measure. This set Ω is of size O(N logd−1 N). We
believe it is the first such set given of size o(N2), though several other methods have
been described for this problem under additional assumptions on the locations of the
point masses [3,7,8,12,14,16,17,19,20]. We emphasize that the set Ω depends only
on N and is not determined on the fly by looking at the Fourier coefficients of the
measure.

This we show in §3 where we also give a set Ω of size O(kd−1N) when we assume
that the set of point masses has at most k points with the same x-coordinate.

In §3 we also describe a general connection of this problem with the problem of
interpolation.

Acknowledgment. We would like to thank the referee for the detailed work, and the many
precise pointers to the literature provided.

2. At most N intervals on T

2.1. Determination from the Fourier coefficients at 0, 1, . . . ,N. We consider sets E ⊂ T
of the form

E =
k⋃

j=1

(a j, b j)

where k ≤ N and the open intervals (a j, b j) are disjoint. We show that f = 1E is determined
by the complex data

f̂ (0), f̂ (1), . . . , f̂ (N).

The family has ≤ 2N real degrees of freedom and the data has 2N + 1, since f̂ (0) is always
real.

Several similar problems with functions supported on intervals are treated in [16].
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Theorem 1. Suppose that the sets E,E′ ⊆ T are both unions of at most N open arcs and that
χ̂E(ν) = χ̂E′(ν) for ν = 0, 1, . . . ,N. Then E = E′.

Proof. For x = (x1, . . . , xn) let σk(x) denote the k-th elementary symmetric function of the
variables xi and let sk(x) =

∑n
j=1 xk

j denote the k-th power sum of the xi.

We use the Newton-Girard formulas

(1) k · σk(x) =
k∑

i=1

(−1)i−1σk−i(x)si(x), (k ≥ 1).

Note that σ0(x) = 1. What is important about these formulas is that if we know s1, . . . , sν then
we know also the numbers σ1, . . . , σν, for all ν ≥ 1. The precise dependence is irrelevant for
our purposes.

Suppose N is given and that the sets E =
⋃n

j=1 I j and E′ =
⋃n′

j=1 I′j (with n,n′ ≤ N and the
I j, I′j being arcs) have the same Fourier coefficients of order up to N:

χ̂E(ν) = χ̂E′(ν), ν = 0, 1, 2, . . . ,N.

If I j = (a j, b j) and I′j = (a′j, b
′
j) then, differentiating the functions χE, χE′ , we obtain that the

measures

µ =
n∑

j=1

δa j − δb j , µ
′ =

n′∑
j=1

δa′j
− δb′j

,

have the same Fourier coefficients of order up to N. Writing z j = e−2πia j ,w j = e−2πib j , z′j =

e−2πia′j ,w′j = e−2πib′j we obtain the relations

n∑
j=1

zνj − wνj =
n′∑
j=1

z′νj − w′νj , ν = 1, 2, . . . ,N.

From this we get sν(z,w′) = sν(z′,w), for ν = 1, 2, . . . ,N, where

sν(z,w′) :=
n∑

j=1

zνj +
n′∑
j=1

w′νj ,

and

sν(z′,w) =
n′∑
j=1

z′νj +
n∑

j=1

wνj .

By the Newton-Girard formulas the numbers s1, . . . , sN determine the numbers σ1, . . . , σN,
hence we have
(2) σν(z,w′) = σν(z′,w), ν = 1, 2, . . . ,N.

Write M = n + n′ ≤ 2N and observe that
σM(z,w′) = σM(z′,w),

i.e.,
∏

z jw−1
j =

∏
z′jw

′−1
j . This comes from the fact that the total length of E and E′ is the

same, as testified by χ̂E(0) = χ̂E′(0).

We now use the fact that
∣∣∣z j
∣∣∣ = ∣∣∣w j

∣∣∣ = ∣∣∣∣z′j∣∣∣∣ = ∣∣∣∣w′j∣∣∣∣ = 1:

(3) σk(z,w′) = σk

(1
z
,

1
w′

)
=
σM−k(z,w′)
σM(z,w′)

, k = 0, 1, . . . ,M,

and similarly for the elementary symmetric functions of the vector (z′,w). For k = 1, 2, . . . ,M−
N − 1 ≤ N we obtain from (3) the missing values of σν for ν = N + 1, . . . ,M − 1.

We have proved that
σν(z,w′) = σν(z′,w), ν = 0, 1, 2, . . . ,M,
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hence the multisets
{
z j,w′j

}
and
{
z′j,w j

}
are equal, since the elementary symmetric functions

determine the polynomials p and q with roots at {z,w′} and {z′,w} respectively and they are
equal. But

{
z j

}
∩
{
w j

}
=
{
z′j

}
∩
{
w′j

}
= ∅ so the only possibility is that

{
z j

}
=
{
z′j

}
and
{
w j

}
=
{
w′j

}
,

as we had to show.
□

Remark 1. Of course it is also possible to solve this problem using Prony’s method, which
we will introduce in Section 3.1. However, Prony’s method will require more samples, as it
cannot exploit the fact that the coefficients of χ̂E alternate between plus and minus one.

Remark 2. The determination of the elementary symmetric functions σν from the power
sums sν (essentially the equal coefficient case for Prony’s problem) has also recently been
pointed out in the PhD thesis of M. Wageringel [25, §1.4], in the form of determining the
numbers ξ1, . . . , ξr from the power sums

mk = ξ
k
1 + · · · + ξk

r , k = 0, 1, . . . , r,

thus also using about half as many power sums than what Prony’s method alone would
require.

2.2. Determination from other sets of Fourier coefficients. The problem is sensitive
to the choice of which Fourier coefficients to use in order to determine the set, even in the
case of one interval E = (a, b). In this case, we have
(4) 2πiνχ̂E(ν) = e−2πiνa − e−2πiνb := zν − wν, ν , 0.

(Here, again, z = e−2πia, w = e−2πib.)
A single Fourier coefficient is not enough to determine the interval uniquely: for ν = 0

this is obvious as χ̂E(0) = b − a. For ν = 1, consider E′ = (a′, b′) such that z′ = −w, w′ = −z
(but this is the only other option). Last, for ν ≥ 2, we may take E = (0, 1

ν ) and E′ = (a′, a′ + 1
ν ),

for some a′ , 0.
For two coefficients, apart from the case when χ̂E(0), χ̂E(1) are known, thus defining E

uniquely, it is also easy to see that knowing χ̂E(1), χ̂E(2) also determines E. No other combi-
nation of two Fourier coefficients χ̂E(m), χ̂E(n) determines the set (we skip the details).

For N ≥ 2, let us point out that even equality of all Fourier coefficients of two sets

E =
N⋃

j=1

(a j, b j), E′ =
N⋃

j=1

(a′j, b
′
j)

at 1, 2, . . . 2N − 1, is not enough to conclude E = E′, while, by Theorem 1, the Fourier coeffi-
cients from 0 to N suffice.

To prove the claim, let us begin with a simple observation. Let x = (x1, . . . , x2N). Then,
(5) s1(x) = . . . s2N−1(x) = 0 ⇐⇒ σ1(x) = . . . σ2N−1(x) = 0.

(We keep the notation for power sums and elementary symmetric functions that was used
in the proof of Theorem 1.) The fact that vanishing power sums give vanishing elementary
symmetric functions follows directly from the Newton-Girard formulas (1). For the con-
verse, observe that always s1(x) = σ1(x) and then apply (1) consecutively for k = 2, . . . , 2N − 1
(or observe that the power sums are themselves symmetric functions, hence they can be
expressed via the elementary symmetric functions).

Fix some θ ∈ (0, π/N) and consider two regular 2N-gons P and Q on the unit circle, with
vertices arranged counterclockwise, defined by

VP =
{
z1, . . . , zN,w′1, . . . ,w

′
N

}
and

VQ =
{
w1, . . . ,wN, z′2, . . . , z

′
N, z

′
1

}
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(see Fig. 1, where VP is blue and VQ is red) where

z1 = 1, w1 = eiθ.

It follows that the numbers in VP are the roots of the polynomial z2N−1 and that the numbers

0
z1

w1

z2

w2

z3w3z4w4

z5

w5

w′
1

z′2

w′
2
z′3

w′
3 z′4

w′
4
z′5

w′
5

z′1

Figure 1. One possible selection of arcs
N⋃

j=1

(z j,w j) and
N⋃

j=1

(z′j,w
′
j) with the

same Fourier coefficients of order 1, 2, . . . , 2N − 1 (shown for N = 5).

in VQ are the roots of the polynomial z2N − ei2Nθ. Since the elementary symmetric functions
of the roots of a polynomial are the coefficients of the polynomial, it follows that the numbers
σν(z,w′), σν(z′,w) vanish for ν = 1, . . . , 2N − 1. By (5), we also have sν(z,w′) = sν(z′,w) = 0 for
ν = 1, . . . , 2N − 1. Then, we have χ̂E(ν) = χ̂E′(ν) for all ν = 1, . . . , 2N − 1, however the sets E, E′
do not coincide, as implied by the arrangement of VP, VQ.

It is interesting to see that many more examples are possible with the points z1, . . . , zN,w′1, . . . ,w
′
N

located at the vertices of a regular 2N-gon and the points z′1, . . . , z
′
N,w1, . . . ,wN located at the

vertices of a rotated regular 2N-gon, but not necessarily in the order shown in Fig. 1. As ex-
plained above these locations guarantee that the two sets

⋃N
j=1(z j,w j) and

⋃N
j=1(z′j,w

′
j) (with

an obvious and excusable abuse of notation) have the same Fourier coefficients of order
1, 2, . . . , 2N − 1 and they are of course not equal.

One needs to find the arrangements of the points z j,w j, z′j,w
′
j on the vertices of these two

polygons so that the following rules are satisfied:

(1) The points z1, . . . , zN,w1, . . . ,wN appear on the circle in the counterclockwise order.
Same for the points z′1, . . . , z

′
N,w

′
1, . . . ,w

′
N. This rule ensures that the arcs (zi,wi) are

non-overlapping and the same for the arcs (z′i ,w
′
i ).

(2) The z j and w′j are blue (polygon P) and the z′j and w j are red (polygon Q).

We can enumerate these arrangements by viewing this problem as a variant of the so-called
Terquem’s problem (see, e.g., [23, Problem 30 on p. 120, and solution on p. 170]). Terquem’s
problem asks in how many ways we can choose a sequence a1 < a2 < . . . < ak from the set
{1, 2, . . . , n} whose elements alternate between odd and even. By viewing blue as odd and
red as even on our polygons we see that we can restate our problem as follows:

In how many ways can we select an alternating sequence a1 < a2 < . . . < a2N
from the set {1, 2, . . . , 4N} such that its complement is also alternating.

The numbers a1, . . . , a2N correspond to the choices for the labels z1,w1, . . . , zN,wN and the
complementary set corresponds to the labels z′1,w

′
1, . . . , z

′
N,w

′
N.
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Following [23, p. 170] we can encode the sequence ai via the sequence bi defined by
bi = ai − i + 1.

This sequence is increasing
b1 ≤ b2 ≤ . . . ≤ b2N

and gives back the sequence ai as ai = bi + i− 1 (which is strictly increasing). It also satisfies
the bounds

1 ≤ bi ≤ 2N + 1.
The alternating property of the sequence ai translates exactly to the bi being all odd. If
we did not care about the complement of the sequence ai being also alternating then, as
explained in [23], all we would have to do is select with replacement the 2N numbers bi
among the odd numbers of the set {1, 2, . . . , 2N + 1}, that is from N + 1 numbers. To ensure
that the complement is also an alternating sequence it is necessary and sufficient to ensure
that the intervals (consecutive values) defined by the sequence ai are all of even length.
But an interval of the ai translates into an interval of constancy for the corresponding bi.
Summarizing, the bi must be odd and be selected an even number of times each. To achieve
this we select with replacement N numbers from the odd numbers of the set {1, 2, . . . , 2N + 1}
and then double the number of times each selection appears. This enumerates the bi and
therefore also the ai. We omit the details.

3. Point masses on Td

3.1. Point masses on T. The one-dimensional problem has a very long history, going back
to Gaspard de Prony’s work [4] from 1795. Since then, many solutions have been proposed,
like Pisarenko’s method [15], MUSIC [21] or ESPRIT [18]. Still, there is ongoing research
on further improvements, see [5] for a recent approach.

We show here another approach from the Electrical Engineering literature (see e.g. [24])
with so-called annihilation filters. We will make use of Theorem 2 repeatedly when solving
the same problem on Td.

Theorem 2. Suppose µ is a measure onTwhich is a sum of at most N complex point masses.
Then µ is determined by the data
(6) µ̂( j), j = −N + 1,−N + 2, . . . ,N.

Proof. Suppose that µ =
∑K

j=1 c jδθ j , with c j ∈ C \ {0}, the θ j all different and K ≤ N. It follows
that

(7) µ̂(n) =
K∑

j=1

c jρ
−n
j , (ρ j = e2πiθ j , n ∈ Z).

Define the polynomial

a(z) =
K∏

j=1

(z − ρ j) = â(0) + â(1)z + . . . + â(K − 1)zK−1 + zK,

and note that â(n) also denotes its Fourier coefficients when viewed as a function onT. Since
aµ = 0 it follows that
(8) â ∗ µ̂(n) = 0, (n ∈ Z).

We now show that the polynomial a(z) is determined up to constant multiples by the condi-
tions

deg a ≤ K(9)
â ∗ µ̂(n) = 0, (n ∈ [1,K]).(10)

It is enough to show that (9) and (10) together imply that a(z) vanishes on the ρ j (this is the
same as (8)), whose number is K, the same as the degree of a.
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Substituting (7) in (10) we get for l = 1, 2, . . . ,K

0 =

K∑
k=0

â(k)µ̂(l − k),

=

K∑
k=0

â(k)
K∑

j=1

c jρ
k−l
j ,

=

K∑
j=1

c jρ
−l
j

K∑
k=0

â(k)ρk
j ,

=

K∑
j=1

c jρ
−l
j a(ρ j).

Observe that the K×K Vandermonde matrix ρ−νj , j, ν = 1, . . . ,K, is nonsingular and, therefore,
all c ja(ρ j) are 0, j = 1, 2, . . . ,K. Since all c j are nonzero this implies that

a(ρ j) = 0, j = 1, 2, . . . ,K.

Suppose µ1, µ2 are two measures with the same Fourier data (6):

µ1 =

K1∑
j=1

c1, jδθ1, j , µ2 =

K2∑
j=1

c2, jδθ2, j , K1 ≤ K2 ≤ N,

and

(11) µ̂1(n) = µ̂2(n), (n = −N + 1, . . . ,N − 1,N).

We are assuming that all θ1, j are distinct and so are all θ2, j, and that c1, j, c2, j ∈ C \ {0}. Write
also ρ1, j = e2πiθ1, j and ρ2, j = e2πiθ2, j .

Write

a1(z) =
K1∏
j=1

(z − ρ1, j), a2(z) =
K2∏
j=1

(z − ρ2, j).

We have â1 ∗ µ̂1(n) = â2 ∗ µ̂2(n) = 0 for all n but we also have â1 ∗ µ̂2(n) = 0 for n = 1, . . . ,N,
because of (11). Applying the fact that a(z) is determined by (9) and (10) with K = K2 we
obtain that a1(z) = a2(z) hence K1 = K2 and

{
ρ1, j

}
=
{
ρ2, j

}
.

It remains to show that the linear map

(c1, . . . , cK)→ (µ̂(1), . . . , µ̂(K))

is injective. This map is given by (7) and it is easily seen to be nonsingular as its determinant
is a multiple of the Vandermonde determinant. □

Remark 3. The number of samples is sharp, as we recover the 2N parameters using 2N
samples. However, note that we use complex samples, to recover N complex parameters and
N parameters in T. One can easily check that the proof extends to the case of point measures
on T + iR, where (7) becomes

µ̂(n) =
K∑

j=1

c jρ
−n
j , (ρ j = e2πi(θ j+iξ j), n ∈ Z).

In case of real coefficients and point measures on T one can utilize µ̂(−k) = µ̂(k) to use only
µ̂(k), k = 0, . . . ,N. This observation is an important part of the unitary ESPRIT algorithm
[10], which uses only real-valued computation to solve the problem.
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3.2. Connections to interpolation. Suppose µ =
∑N

j=1 c jδu j , where u j = (u j1, . . . , u jd) ∈ Td

are distinct points, all c j are non-zero and d > 1. Can we recover µ from a number of Fourier
coefficients that is close to the number of degrees of freedom (in this case (d+1)N or (d+2)N
depending on whether c j ∈ R or c j ∈ C)?

Here the existing results do not seem to be final. In the special case where all u j1 are
different (or equivalently all u jk for a fixed k = 1, . . . , d) the problem is solved using the one-
dimensional theory with O(dN) Fourier coefficients, namely by using the Fourier coefficients
at the locations (m, ϵ2, . . . , ϵd) with m = 0, 1, . . . ,N and ϵ j ∈ {0, 1}, assuming all u j1 are different
(we generalize this in Theorem 8). In the general case and without imposing any restrictions
on the locations u j, it has only been known until this work how to recover µ using O(N2)
Fourier coefficients [14, Section III.C] in the two dimensional case and using O(N2 log2d−2 N)
coefficients in the general case [20].

If one allows for the collection of Fourier coefficients used to depend on the data then
one can recover the parameters with O(N) Fourier coefficients, see [16] for the case d =
2 and [3] for arbitrary d. It was conjectured in [16] that recovery of the parameters in
this problem with d = 2 is always possible with O(N) Fourier coefficients which do not
depend on the data and are on four predetermined lines. This conjecture was disproved
in [7] but the possibility remains that some more general set of O(N) Fourier coefficients
suffices. (In Theorem 9 we show that O(N log N) Fourier coefficients suffice.) For the general
d dimensional case it was shown in [9] that taking a total of O(N2) samples on scattered line
allows for a reconstruction.

Definition 3.1. Suppose Ω ⊆ Zd and k = 1, 2, 3, . . .. We call Ω k-interpolating if whenever
u1, . . . , uℓ ∈ Td, ℓ ≤ k, are distinct and d1, . . . , dℓ ∈ C we can find coefficients cω, ω ∈ Ω, such
that

d j =
∑
ω∈Ω

cωe2πiω·u j , j = 1, 2, . . . , ℓ.

We call Ω k-sufficient if we can recover any measure µ =
∑ℓ

j=1 c jδu j , ℓ ≤ k, (with unknown
c j ∈ C \ {0}, unknown and distinct u j ∈ Td) from its Fourier coefficients at Ω

µ̂(ω) =
ℓ∑

j=1

c je−2πiω·u j , ω ∈ Ω.

The connection between the concepts of k-interpolation and k-sufficiency is the following.

Theorem 3.
(12) Ω is (2N)-interpolating =⇒ Ω is N-sufficient =⇒ Ω is N-interpolating.

Proof. To prove Theorem 3 let us first make the following remark, which says that if we can
solve the problem of sufficiency with the locations fixed then we can also solve the problem
with unknown (but fewer) locations.

Lemma 4. Suppose Ω ⊆ Zd is such that the mapping
(13) µ→ (µ̂(ω), ω ∈ Ω)

is injective on the set

(14)

µ =
k∑

j=1

c jδu j : c j ∈ C

,
for any choice of k ≤ 2N and distinct points u1, . . . , uk ∈ Td. Then the mapping (13) is injective
also on the set

(15)

µ =
ℓ∑

j=1

c jδu j : ℓ ≤ N, c j ∈ C,u j ∈ Td, c j , 0 and the u j are distinct

.
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Proof. Suppose µ =
∑ℓ1

j=1 c jδu j and ν =
∑ℓ2

j=1 d jδv j , ℓ1, ℓ2 ≤ N, are two different measures with
the same image under (13). Then µ−ν is a non-zero measure supported on ≤ 2N points and
is mapped to 0 under (13). This conflicts with the injectivity of (13) on the set (14).

□

For the mapping (13) on the set (14) to be injective it is necessary and sufficient that the
matrix
(16)

(
e2πiu j·ω

)
j=1,...,k, ω∈Ω

has rank k. Write eω(x) = e2πiω·x.

Lemma 5. The mapping (13) on the set (14) is injective if and only if the functions eω form
an interpolating set for the set {u1,u2, . . . , uk}, i.e. for any values d j ∈ C there is a C-linear
combination of the eω which takes the value d j at u j.

Proof. The eω are interpolating at the u j if and only if the rank of the matrix in (16) is k. By
the preceding remark this is equivalent to the mapping (13) on the set (14) being injective.

□

Let us complete the proof of Theorem 3. If Ω is (2N)-interpolating and u1, . . . , u2N are
distinct points in Td it follows from Lemma 5 that the mapping µ→ µ̂|Ω is injective on the
set (14) (with k = 2N). From Lemma 4 it follows that it is also injective on the set (15), hence
Ω is N-sufficient.

If Ω is N-sufficient and u1, . . . , uk ∈ Td, k ≤ N, are distinct points then the matrix (16)
has rank k. Therefore the mapping (13) is injective (with the u j fixed) and from Lemma
5 we get that the functions eω(x) are interpolating, which is what it means for Ω to be N-
interpolating.

□

Now it becomes clear that the situation in dimension 2 is significantly harder than in
dimension 1. The reason is that interpolation is harder. Indeed, in dimension 1 one can
easily find a set of N functions the linear combinations of which can interpolate any data on
any N points. One such example of functions are the monomials 1, x, x2, . . . , xN−1 and another
example are the functions 1, e2πix, e2πi2x, . . . , e2πi(N−1)x (when all u j ∈ T).

Such a set of functions is called a Chebyshev or Haar system and it is well known and easy
to prove that continuous Chebyshev systems do not exist except in dimension 1 [13]. Indeed,
suppose that S ⊆ R2 is an open set and the continuous functions f j : S → R, j = 1, 2, . . . ,N,
are such that for any set of N distinct points u j ∈ S we can find a linear combination of the
f j which interpolates any given real data at the u j. This means that for any choice of the
distinct points u j the determinant of the matrix fi(u j), i, j = 1, 2, . . . ,N, is non-zero. Choose
then the u j to belong to an open disk in S and carry out a continuous movement of the points
u1 and u2 so that they do not collide between themselves and with any of the other points
and such that, at the end of the motion, the two points have exchanged their positions. The
determinant of the matrix has changed sign and, since it has varied continuously during
the motion, it follows that the determinant has vanished at some point during the exchange,
a contradiction. It is proved in [13] that the existence of a (continuous) Chebyshev system
on a set S ⊆ Rd is only possible when S is homeomorphic to a closed subset of a circle.

This argument is strictly for the real case of course but it has been extended [22] to the
case of complex functions: there is a complex Chebyshev system for domains in C but not
for domains in C2 or in higher dimension. More specifically, it is proved in [11, 22] that a
complex continuous Chebyshev system exists on a locally connected set S if and only if S is
homeomorphic to a closed subset of R2. This result allows us to prove that the situation in
T2 is strictly worse than in T.
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Theorem 6. Let d > 1. Suppose Ω ⊆ Zd is N-sufficient. Then |Ω| > N.

Proof. If such an Ω had size N then, according to Theorem 3, the corresponding set of char-
acters eω(x) = e2πiω·x, ω ∈ Ω, would be a continuous Chebyshev system on Td, According
to [11,22] this would make Td embeddable into the plane, which it is not.

□

Again using the connection to interpolation let us now give a new proof, different from the
one given in [14, Section III.C] for the case d = 2 and [12,19] for general d, of the following
fact.

Theorem 7. There is Ω ⊆ Zd of size O(Nd) which is N-sufficient.

Proof. It is enough to produce a set Ω ⊆ Zd of size O(Nd) such that the set of corresponding
exponentials e2πiω·x is 2N-interpolating, i.e. its linear combinations can interpolate any val-
ues at any 2N distinct points inTd. We use the fact that for any set of 2N distinct points inCd

and any complex data on them there is a complex polynomial in d variables of degree at most
2N − 1 (the degree of each monomial is the sum of the exponents of the variables) which in-
terpolates the data. To see this observe that for any set of 2N distinct points x1, . . . , x2N ∈ Cd

we can find a vector u ∈ Cd such that the complex numbers ti = v · xi are all different. Let
now p be a one-variable polynomial of degree ≤ 2N − 1 which interpolates the given data on
the points ti. Then q(x) = p(v · x) is a two-variable polynomial that interpolates the given
data on the points xi. The degree of q is no larger than 2N − 1.

TakeΩ =
{
m ∈Nd

0 :
∑d

j=1 m j ≤ 2N − 1
}
. Suppose u1, . . . , u2N ∈ Td are distinct and d1, . . . , d2N ∈

C. Let p(z) =
∑

m pmzm have degree at most 2N − 1 and interpolate the data dk at the points
(e2πiu j1 , . . . , e2πiu jd) ∈ Cd, j = 1, 2, . . . , 2N (note that these are distinct points as the ud are in Td

not in Rd). We have
d j = p(e2πiu j1 , . . . , e2πiu jd) =

∑
m∈Ω

pme2πiu j·m,

which means that the functions e2πiω·x, ω ∈ Ω, are interpolating the arbitrary data d j at the
2N arbitrary points u j, as we had to prove.

□

3.3. Small sufficient sets for Td. Next we provide a case where the sufficient number of
coefficients for N points of Td is O(kd−1N), for some 1 ≤ k ≤ N.

Theorem 8. Let µ =
∑N

j=1 c jδu j , where u j = (x j, y j) ∈ T × Td−1 are distinct points and all
c j ∈ C\{0}. Assume that the number of points u j that share the same x coordinate is at most
k, for some 1 ≤ k ≤ N. Then µ can be recovered by O(kd−1N) Fourier coefficients.

Proof. Write U =
{
u j : j = 1, . . . ,N

}
and X =

{
x j : j = 1, . . . ,N

}
for the set of distinct x that

appear as first coordinates for the points in U. Notice that X may have fewer than N points.
Recall that

µ̂(m,n) =
N∑

j=1

c je−2πi(mx j+n·y j)

=
∑
x∈X

 ∑
y: (x,y)∈U

c(x,y)e−2πin·y

 e−2πimx,

for m ∈ Z, n ∈ Zd−1. For fixed n the numbers µ̂(m,n) are the Fourier coefficients of a collection
of point masses at the points of X (some of these point masses may be 0).

Consider the data
µ̂(−N, ℓ), . . . , µ̂(0, ℓ), µ̂(1, ℓ), . . . , µ̂(N, ℓ),
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where ℓ ∈ Zd−1 is fixed. By Theorem 2, we can recover the sums
(17) S(x, ℓ) =

∑
y: (x,y)∈U

c(x,y)e−2πiℓ·y, ℓ ∈ Zd−1.

and the corresponding x ∈ X. Notice that we only “see” the x for which S(x, ℓ) , 0.
For fixed x ∈ X, define the measure on Td−1

λx =
∑

y: (x,y)∈U

c(x,y)δy,

which is supported on at most k locations onTd−1. By Theorem 7, there isΩ ⊂ Zd−1 of size at
most O(kd−1) that is k-sufficient. Thus, knowing the Fourier coefficients of λx at ℓ ∈ Ω is suf-
ficient to recover the measure. Knowing these Fourier coefficients means precisely knowing
the sums in (17), so we recover the points y sitting over each x ∈ X and the corresponding
coefficients. The proof of the Theorem is complete.

□

Finally we come to the main result of this section. One can view Theorem 9 as a more
sophisticated version of Theorem 8, where the gain comes from being able to distinguish
which x ∈ T have many points projected onto them. This set of x cannot be large.

This theorem was first proved in [20], using techniques from computational algebra. We
give an elementary proof.

Theorem 9. There is Ω ⊆ Zd of size |Ω| ≤ CdN logd−1(N) which is N-interpolating. One such
set is the positive octant of the hyperbolic cross

Γd
N =

n ∈Nd
0 :

d∏
j=1

(
n j + 1

)
≤ N

 .
Proof. Let U =

{
u j : j = 1, . . . ,N

}
. As noted in (16), it suffices to show that the vectors

vΓ(u j) = (e2πiu j·w)ω∈Γd
N
, j = 1, . . . ,N

are linearly independent. We use induction in d. For the base case d = 1, observe that
the matrix (e2πiu jω) j=1,...,N, ω=0,...,N−1 is Vandermonde. For d ≥ 2, assume on the contrary that
there are cu ∈ C \ {0}, u ∈ U (we can exclude nodes with zero coefficients) satisfying∑

u∈U

cuvΓ(u) = 0.

Let X =
{
x j ∈ Td−1 : j = 1, . . . ,N

}
be the set of distinct x that appear as the first d − 1 entries

of points in U (again, X may have fewer than N points). As in the proof of Theorem 8, we
note that the condition of linear dependence rewrites as

N∑
j=1

cu je
−2πi(m·x j+ky j) =

∑
x∈X

 ∑
y: (x,y)∈U

c(x,y)e−2πiky

 e−2πim·x(18)

= 0,

for m ∈ Zd−1, k ∈ Z, (m, k) ∈ Γd
N.

Observe that we have
(m, 0) ∈ Γd

N for m ∈ Γd−1
N and(19)

(m, k − 1) ∈ Γd
N for m ∈ Γd−1

⌊N/k⌋, k ∈N.
Then, as (18) holds for (m, 0) ∈ Γd

N for all m ∈ Γd−1
N , we can use the induction hypothesis to

conclude that
(20)

∑
y: (x,y)∈U

c(x,y)e−2πiyk = 0, for k = 0, for all x ∈ X.
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We partition X according to how many points of U project to each point:
X = X1 ⊔ . . . ⊔ Xr (r ≤ N),

where Xt =
{
x ∈ X :

∣∣∣{y : (x, y) ∈ U
}∣∣∣ = t

}
. By (20), we see that

c(x,y) = 0 for all x ∈ X1, (x, y) ∈ U,

which contradicts cu ∈ C \ {0} and thus X1 = ∅. Now we use the crucial observation that

(21) |U| =
r∑

j=1

j|X j|

which implies with X1 = ∅ that |X| ≤ ⌊N/2⌋.
Taking data at (19) for k = 0, 1, by the induction hypothesis we see that (20) holds true

for k = 0, 1. If X2 is not empty, then, for any x ∈ X2, the summands in (20) are exactly 2, for
each k ∈ {0, 1}. Thus, we have a homogeneous 2 × 2 system, with a Vandermonde matrix of
coefficients, so

c(x,y) = 0 for all x ∈ X2, (x, y) ∈ U,
a contradiction. That allows us to deduce X2 = ∅, giving us |X| ≤ ⌊N/3⌋. Repeating the
argument r times results in the contradiction X = ∅. □

We use Theorem 3 to see that O(N logd−1 N) samples are sufficient for unique determina-
tion of a point measure µ of at most N peaks.

Corollary 10. There is Ω ⊆ Zd of size |Ω| = O(N logd−1(N)) which is N-sufficient. One such
set is Γd

2N.

Note, however, that the proof cannot be converted in an algorithm recovering the measure
from its Fourier samples. Next, we show that such an algorithm exists for a slightly larger
sampling set.

Theorem 11. Any measure µ =
∑K

j=1 c jδu j , K ≤ N, where u j = (x j, y j) ∈ Td−1 × T are distinct
points and c j ∈ C \ {0}, is determined by its Fourier coefficient on the set

(22) Γ̃d
N =

n ∈Nd
0 :

d∏
j=1

⌈
n j + 1

2

⌉
≤ N

 .
The measure can be recovered with an algorithm using a finite number of steps.

Proof. The proof works by using one-dimensional methods to give a large set of candidates.
These candidates are all point measures with at most N summands. By Corollary 10, only
one can fit all the available data, as Γd

2N ⊂ Γ̃d
N . We use the same notation as in the proof of

Theorem 9.
Again, we use induction in d, where the case d = 1 is a consequence of Theorem 2. Further,

note that for r ∈N \ {0} we have
(23) (m, k) ∈ Γ̃d

N for m ∈ Γ̃d−1
⌊N/r⌋ and k = 2r − 2, 2r − 1.

We again use the decomposition (18) and introduce the notation

cx(k) =
∑

y: (x,y)∈U

c(x,y)e−2πiyk,

to write
µ̂(m, k) =

∑
x∈X

cx(k)e−2πim·x, m ∈ Zd−1, k ∈ Z.

Applying our algorithm for d − 1 to the samples µ̂(m, 0), where m ∈ Γ̃d−1
N , we determine the

quantities
cx(0) =

∑
y: (x,y)∈U

c(x,y)
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as well as all x ∈ X for which cx(0) , 0. This includes all x ∈ X1. Again from our algorithm
for d − 1, the numbers µ̂(m, 1), m ∈ Γ̃d−1

N , determine the quantities

cx(1) =
∑

y: (x,y)∈U

c(x,y)e−2πiy,

and all x ∈ X for which cx(1) , 0. So, by the the data (22) corresponding to n = (m, k), with
m ∈ Γ̃d−1

N and k = 0, 1, we can determine, for each point x, the Fourier coefficients

λ̂x(0), λ̂x(1)

of the one-dimensional measure sitting over x:

λx =
∑

y: (x,y)∈U

c(x,y)δy.

We also determine those x ∈ X for which at least one of the numbers
cx(0), cx(1)

is non-zero. We collect them in the set Z1. As we said above this includes all x ∈ X1:
X1 ⊂ Z1 ⊂ X.

Now assume for the moment that we could identify the subset X1 in Z1. Then we could
determine the part of µ sitting over X1:

µ1 =
∑
x∈X1

∑
y: (x,y)∈U

c(x,y)δ(x,y).

Subtracting µ̂1(m, k) from µ̂(m, k) we see that we know the Fourier coefficients of the measure
µ − µ1 for all indices in (22).

The next stage is to determine µ2, the part of µ sitting over X2, the points on the x-axis
with two point masses over them. We will do this using the data

µ̂ − µ1(m, k),(24)
for (m, k) ∈ Γ̃d−1

N × {0, 1} and (m, k) ∈ Γ̃d−1
⌊N

2 ⌋ × {2, 3}.

From (21) the measure µ−µ1 contains at most N/2 point masses, therefore, by the induction
hypothesis, the data (24) are now enough to determine the quantities

cx(k) =
∑

y: (x,y)∈U

c(x,y)e−2πiky, x ∈ X2 ⊔ X3 ⊔ · · · ⊔ Xr,

for k = 0, . . . , 3, and those x ∈ X for which at least one of the numbers cx(k), k = 0, . . . , 3, is
non-zero, which we collect in the set Z2. This includes all x ∈ X2 by using the induction
hypothesis. Again, assume we were somehow able to identify X2 from the larger set Z2.

If x ∈ X2 this information suffices, because of Theorem 2, to determine λx, that is, the
part of measure µ sitting over x. So the data (m, k) ∈Nd−1

0 ×N0 in (22) with k ≤ 3 determine
µ2, the part of measure µ sitting over X2.

This process continues. The next step is to find, using the data
(µ − µ1 − µ2)∧(m, k),

where
(m, k) ∈Nd−1

0 ×N0 as in (22) with k ≤ 5
the measure µ3, the part of µ sitting over X3. This is again possible since µ−µ1−µ2 contains
at most N/3 point masses.

Continuing like this we determine the measure µ completely.
However, we do not know which subset of Z1 is X1. Instead, we run the whole procedure

for every possible choice, not only for X1 but also X2 ⊂ Z2 and so on. As all sets are finite and
only one solution exists, this procedure will recover µ in a finite number of operations. □
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Theorem 11 is a new result, showing that in principle O(N logd−1 N) samples enable not
only to conclude uniqueness (which allows to search the continuous parameter space to
recover µ), but to recover the measure using a finite number of computational steps. It
was sketched in the PhD thesis [6, Thm. 3.24] of the first-named author. However, the
algorithm does not have polynomial runtime. It would be interesting to examine whether
this is a conceptual barrier or whether more efficient methods exist. The result should
be contrasted with the result of Sauer [20], which uses O(N2 log2d−2 N) samples but has
polynomial runtime.
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