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Groups and Haar measure

Locally compact abelian groups:

Integers Z = {. . . ,−2,−1, 0, 1, 2, . . .}
Finite cyclic group Zm = {0, 1, . . . ,m − 1}: addition modm

Reals R
Torus T = R/Z: addition of reals mod1

Products: Zd , Rd , T× R, etc

Haar measure on G = translation invariant on G : µ(A) = µ(A + t).
Unique up to scalar multiple.

Counting measure on Z
Counting measure on Zm, normalized to total measure 1 (usually)

Lebesgue measure on R
Lebesgue masure on T viewed as a circle

Product of Haar measures on the components
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Characters and the dual group

Character is a (continuous) group homomorphism from G to the
multiplicative group U = {z ∈ C : |z | = 1}.

χ : G → U satsifies χ(h + g) = χ(h)χ(g)

If χ, ψ are characters then so is χψ (pointwise product). Write χ+ ψ
from now on instead of χψ.

Group of characters (written additively) Ĝ is the dual group of G

G = Z =⇒ Ĝ = T: the functions χx(n) = exp(2πixn), x ∈ T
G = T =⇒ Ĝ = Z: the functions χn(x) = exp(2πinx), n ∈ Z
G = R =⇒ Ĝ = R: the functions χt(x) = exp(2πitx), t ∈ R
G = Zm =⇒ Ĝ = Zm: the functions χk(n) = exp(2πikn/m), k ∈ Zm

G = A× B =⇒ Ĝ = Â× B̂

Example: G = T× R =⇒ Ĝ = Z× R. The characters are
χn,t(x , y) = exp(2πi(nx + ty)).

G is compact ⇐⇒ Ĝ is discrete

Pontryagin duality:
̂̂
G = G .
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G = Zm =⇒ Ĝ = Zm: the functions χk(n) = exp(2πikn/m), k ∈ Zm

G = A× B =⇒ Ĝ = Â× B̂
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G = Z =⇒ Ĝ = T: the functions χx(n) = exp(2πixn), x ∈ T
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G = T =⇒ Ĝ = Z: the functions χn(x) = exp(2πinx), n ∈ Z
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The Fourier Transform of integrable functions

f ∈ L1(G ). That is ‖f ‖1 :=
∫
G |f (x)| dµ(x) <∞

If G is finite then L1(G ) is all functions G → C
The FT of f is f̂ : Ĝ → C defined by

f̂ (χ) =

∫
G

f (x)χ(x) dµ(x), χ ∈ Ĝ

Example: G = T (“Fourier coefficients”):

f̂ (n) =

∫
T

f (x)e−2πinx dx , n ∈ Z

Example: G = R (“Fourier transform”):

f̂ (ξ) =

∫
T

f (x)e−2πiξx dx , ξ ∈ R

Example: G = Zm (“Discrete Fourier transform or DFT”):

f̂ (k) =
1

m

m−1∑
j=0

f (j)e−2πikj/m, k ∈ Zm
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Elementary properties of the Fourier Transform

Linearity: ̂λf + µg = λf̂ + µĝ .

Symmetry: f̂ (−x) = f̂ (x), f̂ (x) = f̂ (−x)

Real f : then f̂ (x) = f̂ (−x)

Translation: if τ ∈ G , ξ ∈ Ĝ , fτ (x) = f (x − τ) then
f̂τ (ξ) = ξ(τ) · f̂ (ξ).

Example: G = T: ̂f (x − θ)(n) = e−2πinθ f̂ (n), for θ ∈ T, n ∈ Z.

Modulation: If χ, ξ ∈ Ĝ then ̂χ(x)f (x)(ξ) = f̂ (ξ − χ).

Example: G = R: ̂e2πitx f (x)(ξ) = f̂ (ξ − t).

f , g ∈ L1(G ): their convolution is f ∗ g(x) =
∫
G f (t)g(x − t) dµ(t).

Then ‖f ∗ g‖1 ≤ ‖f ‖1‖g‖1 and

f̂ ∗ g(ξ) = f̂ (ξ) · ĝ(ξ), ξ ∈ Ĝ
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Modulation: If χ, ξ ∈ Ĝ then ̂χ(x)f (x)(ξ) = f̂ (ξ − χ).

Example: G = R: ̂e2πitx f (x)(ξ) = f̂ (ξ − t).

f , g ∈ L1(G ): their convolution is f ∗ g(x) =
∫
G f (t)g(x − t) dµ(t).

Then ‖f ∗ g‖1 ≤ ‖f ‖1‖g‖1 and

f̂ ∗ g(ξ) = f̂ (ξ) · ĝ(ξ), ξ ∈ Ĝ
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Symmetry: f̂ (−x) = f̂ (x), f̂ (x) = f̂ (−x)

Real f : then f̂ (x) = f̂ (−x)

Translation: if τ ∈ G , ξ ∈ Ĝ , fτ (x) = f (x − τ) then
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Orthogonality of characters on compact groups

If G is compact (=⇒ total Haar measure = 1) then characters are in
L1(G ), being bounded.

If χ ∈ Ĝ then∫
G
χ(x) dx =

∫
G
χ(x + g) dx = χ(g)

∫
G
χ(x) dx ,

so
∫
G χ = 0 if χ nontrivial, 1 if χ is trivial (= 1).

If χ, ψ ∈ Ĝ then χ(x)ψ(−x) is also a character. Hence

〈χ, ψ〉 =

∫
G
χ(x)ψ(x) dx =

∫
G
χ(x)ψ(−x) dx =

{
1 χ = ψ
0 χ 6= ψ

Fourier representation (inversion) in Zm: G = Zm =⇒ the m

characters form a complete orthonormal set in L2(G ):

f (x) =
m−1∑
k=0

〈f (·), e2πik·〉e2πikx =
m−1∑
k=0

f̂ (k)e2πikx

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 6 / 36



Orthogonality of characters on compact groups

If G is compact (=⇒ total Haar measure = 1) then characters are in
L1(G ), being bounded.

If χ ∈ Ĝ then∫
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L2 of compact G

Trigonometric polynomials = finite linear combinations of characters
on G

Example: G = T. Trig. polynomials are of the type
∑N

k=−N cke2πikx .
The least such N is called the degree of the polynomial.

Example: G = R. Trig. polynomials are of the type
∑K

k=1 cke2πiλkx ,
where λj ∈ R.

Compact G : Stone - Weierstrass Theorem =⇒ trig. polynomials
dense in C (G ) (in ‖·‖∞).

Fourier representation in L2(G ): Compact G : The characters form a

complete ONS. Since C (G ) is dense in L2(G ):

f =

∫
χ∈bG f̂ (χ)χ dχ all f ∈ L2(G ), convergence in L2(G )

Ĝ necessarily discrete in this case
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L2 of compact G , continued

Compact G : Parseval formula:∫
G

f (x)g(x) dx =

∫
bG f̂ (χ)ĝ(χ) dχ.

Compact G : f → f̂ is an isometry from L2(G ) onto L2(Ĝ ).

Example: G = T∫
T

f (x)g(x) dx =
∑
k∈Z

f̂ (k)ĝ(k), f , g ∈ L2(T).

Example: G = Zm

m−1∑
j=0

f (j)g(j) =
m−1∑
k=0

f̂ (k)ĝ(k), all f , g : Zm → C
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f̂ (k)ĝ(k), f , g ∈ L2(T).

Example: G = Zm

m−1∑
j=0

f (j)g(j) =
m−1∑
k=0
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Triple correlations in Zp: an application

Problem of significance in (a) crystallography, (b) astrophysics:
determine a subset E ⊆ Zn from its triple correlation:

NE (a, b) = #{x ∈ Zn : x , x + a, x + b ∈ E}, a, b ∈ Zn

=
∑
x∈Zn

1E (x)1E (x + a)1E (x + b)

Counts number of occurences of translated 3-point patterns {0, a, b}.

E can only be determined up to translation: E and E + t have the
same N(·, ·).
For general n it has been proved that N(·, ·) cannot determine E even
up to translation (non-trivial).
Special case: E can be determined up to translation from N(·, ·) if
n = p is a prime.
Fourier transform of NE : Zn × Zn → R is easily computed:

N̂E (ξ, η) = 1̂E (ξ)1̂E (η)1̂E (−(ξ + η)), ξ, η ∈ Zn.
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Triple correlations in Zp: an application (continued)

If NE ≡ NF for E ,F ⊆ Zn then

1̂E (ξ)1̂E (η)1̂E (−(ξ+η)) = 1̂F (ξ)1̂F (η)1̂F (−(ξ+η)), ξ, η ∈ Zn (1)

Setting ξ = η = 0 we deduce #E = #F .

Setting η = 0, and using f̂ (−x) = f̂ (x) for real f , we get
∣∣∣1̂E

∣∣∣ ≡ ∣∣∣1̂F

∣∣∣.
If 1̂F is never 0 we divide (1) by its RHS to get

φ(ξ)φ(η) = φ(ξ + η), where φ = 1̂E

/
1̂F (2)

Hence φ : Zn → C is a character and 1̂E ≡ φ1̂F .

Since Ẑn = Zn we have φ(ξ) = e2πitξ/n for some t ∈ Zn

Hence E = F + t

So NE determines E up to translation if 1̂E is never 0
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Triple correlations in Zp: an application (conclusion)

Suppose n = p is a prime, E ⊆ Zp. Then

1̂E (ξ) =
1

p

∑
s∈E

(ζξ)s , ζ = e−2πi/p is a p-root of unity. (3)

Each ζξ, ξ 6= 0, is a primitive p-th root of unity itself.

All powers (ζξ)s are distinct, so 1̂E (ξ) is a subset sum of all primitive
p-th roots of unity (ξ 6= 0).

The polynomial 1 + x + x2 + · · ·+ xp−1 is the minimal polynomial
over Q of each primitive root of unity (there are p − 1 of them).

It divides any polynomial in Q[x ] which vanishes on some primitive
p-th root of unity

The only subset sums of all roots of unity which vanish are the empty
and the full sum (E = or E = Zp).

So in Zp the triple correlation NE (·, ·) determines E up to translation.
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The basics of the FT on the torus (circle) T = R/2πZ

1 ≤ p ≤ q ⇐⇒ Lq(T) ⊆ Lp(T): nested Lp spaces. True on compact
groups.

f ∈ L1(T): we write f (x) ∼
∑∞

k=−∞ f̂ (k)e2πikx to denote the
Fourier series of f . No claim of convergence is made.

The Fourier coefficients of f (x) = e2πikx is the sequence f̂ (n) = δk,n.

The Fourier series of a trig. poly. f (x) =
∑N

k=−N ake2πikx is the
sequence . . . , 0, 0, a−N , a−N+1, . . . , a0, . . . , aN , 0, 0, . . ..

Symmetric partial sums of the Fourier series of f :
SN(f ; x) =

∑N
k=−N f̂ (k)e2πikx

From f̂ ∗ g = f̂ · ĝ we get easily SN(f ; x) = f (x) ∗ DN(x), where

DN(x) =
N∑

k=−N

e2πikx =
sin 2π(N + 1

2)x

sinπx
(Dirichlet kernel of order N)
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The Dirichlet kernel
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The Dirichlet kernel DN(x) for N = 10
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Pointwise convergence

Important: ‖DN‖1 ≥ C log N, as N →∞

TN : f → SN(f ; x) = DN ∗ f (x) is a (continuous) linear functional
C (T) → C. From the inequality ‖DN ∗ f ‖∞ ≤ ‖DN‖1‖f ‖∞
‖TN‖ = ‖DN‖1 is unbounded

Banach-Steinhaus (uniform boundedness principle) =⇒
Given x there are many continuous functions f such that TN(f ) is
unbounded

Consequence: In general SN(f ; x) does not converge pointwise to
f (x), even for continuous f
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Summability

Look at the arithmetical means of SN(f ; x)

σN(f ; x) =
1

N + 1

N∑
n=0

Sn(f ; x) = KN ∗ f (x)

The Fejér kernel KN(x) is the mean of the Dirichlet kernels

KN(x) =
N∑

n=−N

(
1− |n|

N + 1

)
e2πinx =

1

N + 1

(
sinπ(N + 1)x

sinπx

)2

≥ 0.

KN(x) is an approximate identity:

(a)
∫

T KN(x) dx = K̂N(0) = 1,
(b) ‖KN‖1 is bounded (‖KN‖1 = 1, from nonnegativity and (a)),
(c) for any ε > 0 we have

∫
|x |>ε |KN(x)| dx → 0, as N →∞
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The Fejér kernel
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Summability (continued)

KN approximate identity =⇒ KN ∗ f (x) → f (x), in some Banach
spaces. These can be:

C (T) normed with ‖·‖∞: If f ∈ C (T) then σN(f ; x) → f (x)
uniformly in T.

Lp(T), 1 ≤ p <∞: If f ∈ Lp(T) then ‖σN(f ; x)− f (x)‖p → 0

Cn(T), all n-times C -differentiable functions, normed with
‖f ‖Cn =

∑n
k=0

∥∥f (k)
∥∥
∞

Summability implies uniqueness: the Fourier series of f ∈ L1(T)
determines the function.

Another consequence: trig. polynomials are dense in
Lp(T),C (T),Cn(T)

Another important summability kernel: the Poisson kernel

P(r , x) =
∑
k∈Z

rke2πikx , 0 < r < 1: absolute convergence obvious

Significant for the theory of analytic functions.
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The decay of the Fourier coefficients at ∞

Obvious: f̂ (n) ≤ ‖f ‖1

Riemann-Lebesgue Lemma: lim|n|→∞ f̂ (n) = 0 if f ∈ L1(T).
Obviously true for trig. polynomials and they are dense in L1(T).

Can go to 0 arbitrarily slowly if we only assume f ∈ L1.

f (x) =
∫ x
0 g(t) dt, where

∫
g = 0: f̂ (n) = 1

2πin ĝ(n) (Fubini)

Previous implies: f̂ (|n|) = −f̂ (−|n|) ≥ 0 =⇒
∑

n 6=0 f̂ (n)
/
n <∞.∑

n>0
sin nx
log n is not a Fourier series.

f is an integral =⇒ f̂ (n) = o(1/n): the “smoother” f is the better
decay for the FT of f

f ∈ C 2(T) =⇒ absolute convergence for the Fourier Series of f .

Another condition that imposes “decay”:

f ∈ L2(T) =⇒
∑

n

∣∣∣f̂ (n)
∣∣∣2 <∞.
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Interpolation of operators

T is bounded linear operator on dense subsets of Lp1 and Lp2 :

‖Tf ‖q1
≤ C1‖f ‖p1

, ‖Tf ‖q2
≤ C2‖f ‖p2

Riesz-Thorin interpolation theorem: T : Lp → Lq for any p
between p1, p2 (all p’s and q’s ≥ 1).

p and q are related by:

1

p
= t

1

p1
+ (1− t)

1

p2
=⇒ 1

q
= t

1

q1
+ (1− t)

1

q2

‖T‖Lp→Lq ≤ C t
1C

(1−t)
2

The exponents p, q, . . . are allowed to be ∞.
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Interpolation of operators: the 1
/
p, 1

/
q plane

1
/
p

s

s
S

S
S

S
S

S
S

S
S

SS

0 1

0

1

1
/
q

(1/p1, 1/q1)

(1/p2, 1/q2)

(1/p, 1/q)

s
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The Hausdorff-Young inequality

Hausdorff-Young: Suppose 1 ≤ p ≤ 2, 1
p + 1

q = 1, and
f ∈ Lp(T). It follows that∥∥∥f̂

∥∥∥
Lq(Z)

≤ Cp‖f ‖Lp(T)

False if p > 2.

Clearly true if p = 1 (trivial) or p = 2 (Parseval).

Use Riesz-Thorin interpolation for 1 < p < 2 for the operator
f → f̂ from Lp(T) → Lq(Z).
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An application: the isoperimetric inequality

Suppose Γ is a simple closed curve in the plane with perimeter L
enclosing area A.

A ≤ 1

4π
L2 (isoperimetric inequality)

Equality holds only when Γ is a circle.

Wirtinger’s inequality: if f ∈ C∞(T) then∫ 1

0

∣∣∣f (x)− f̂ (0)
∣∣∣2 dx ≤ 1

4π2

∫ 1

0

∣∣f ′(x)
∣∣2 dx . (4)

By smoothness f (x) equals its Fourier series and so does
f ′(x) = 2πi

∑
n nf̂ (n)e2πinx

FT is an isometry (Parseval) so LHS of (4) is
∑

n 6=0

∣∣∣f̂ (n)
∣∣∣2 while the

RHS is
∑

n 6=0 n
∣∣∣f̂ (n)

∣∣∣2 so (4) holds.

Equality in (4) precisely when f (x) = f̂ (−1)e−2πix + f̂ (0) + f̂ (1)e2πix .
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enclosing area A.

A ≤ 1

4π
L2 (isoperimetric inequality)

Equality holds only when Γ is a circle.

Wirtinger’s inequality: if f ∈ C∞(T) then∫ 1

0

∣∣∣f (x)− f̂ (0)
∣∣∣2 dx ≤ 1

4π2

∫ 1

0
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An application: the isoperimetric inequality (continued)

Hurwitz’ proof. First assume Γ is smooth, has L = 1.

Parametrization of Γ: (x(s), y(s)), 0 ≤ s ≤ 1 w.r.t. arc length s
x , y ∈ C∞(T), (x ′(s))2 + (y ′(s))2 = 1.

Green’s Theorem =⇒ area A =
∫ 1
0 x(s)y ′(s) ds:

A =

∫
(x(s)− x̂(0))y ′(s) =

=
1

4π

∫
(2π(x(s)− x̂(0)))2 + y ′(s)2 − (2π(x(s)− x̂(0))− y ′(s))2

≤ 1
/
4π

∫
4π2(x(s)− x̂(0))2 + y ′(s)2 (drop last term)

≤ 1
/
4π

∫
x ′(s)2 + y ′(s)2 (Wirtinger’s ineq)

= 1
/
4π

For equality must have x(s) = a cos 2πs + b sin 2πs + c ,
y ′(s) = 2π(x(s)− x̂(0)). So x(s)2 + y(s)2 constant if c = 0.
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Fourier transform on Rn

Initially defined only for f ∈ L1(Rn). f̂ (ξ) =
∫

Rn f (x)e−2πiξ·x dx .

Follows:
∥∥∥f̂

∥∥∥
∞
≤ ‖f ‖1. f̂ is continuous.

Trig. polynomials are not dense anymore in the usual spaces.

But Riemann-Lebesgue is true. First for indicator function of an
interval

[a1, b1]× · · · × [an, bn].

Then approximate an L1 function by finite linear combinations of
such.

Multi-index notation α = (α1, . . . , αn) ∈ Nn:
(a) |α| = α1 + · · ·+ αn.
(b) xα = xα1

1 xα2
2 · · · xαn

n

(c) ∂α = (∂
/
∂1)

α1 · · · (∂
/
∂n)

αn

Diff operators D jφ := 1
2πi (∂

/
∂xj), Dαφ = (1

/
2πi)|α|∂α.
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Schwartz functions on Rn

Lp(Rn) spaces are not nested.

Not clear how to define f̂ for f ∈ L2.

Schwartz class S: those φ ∈ C∞(Rn) s.t. for all multiindices α, γ

‖φ‖α,γ := sup
x∈Rn

|xγ∂αφ(x)| <∞.

The ‖φ‖α,γ are seminorms. They determine the topology of S.

C∞
0 (Rn) ⊆ S

Easy to see that D̂ j(φ)(ξ) = ξj φ̂(ξ) and x̂jφ(x)(ξ) = −D j φ̂(ξ).

More generally ξαDγφ̂(ξ) = ̂Dα(−x)γφ(x)(ξ).

φ ∈ S =⇒ φ̂ ∈ S (smoothness =⇒ decay, decay =⇒ smoothness)

Fourier inversion formula: φ(x) =
∫
φ̂(ξ)e2πiξx dξ.

Can also write as
̂̂
φ(−x) = φ(x).

We first show its validity for φ ∈ S.
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Easy to see that D̂ j(φ)(ξ) = ξj φ̂(ξ) and x̂jφ(x)(ξ) = −D j φ̂(ξ).

More generally ξαDγφ̂(ξ) = ̂Dα(−x)γφ(x)(ξ).
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Can also write as
̂̂
φ(−x) = φ(x).

We first show its validity for φ ∈ S.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 25 / 36



Fourier inversion formula on S

̂ shifting: f , g ∈ L1(Rn) =⇒
∫

f ĝ =
∫

f̂ g (Fubini)

Define the Gaussian function g(x) = (2π)−n/2e−|x |
2/2, x ∈ Rn.

This normalization gives
∫

g(x) =
∫
|x |2g(x) = 1.

Using Cauchy’s integral formula for analytic functions we prove
ĝ(ξ) = (2π)n/2g(2πξ). The Fourier inversion formula holds.

Write gε(x) = ε−ng(x/ε), an approximate identity.

We have ĝε(ξ) = (2π)n/2g(2πεξ), limε→0 ĝε(ξ) = 1.̂̂
φ(−x) =

∫
e2πiξx φ̂(ξ) dξ = limε→0

∫
e2πiξx φ̂(ξ)ĝε(ξ) dξ (dom. conv.)

= limε→0

∫ ̂φ(·+ x)(ξ)ĝε(ξ) dξ (FT of translation)

= limε→0

∫
φ(x + y) ̂̂gε(y) dy (̂ shifting)

= limε→0

∫
φ(x + y)gε(−y) dy (FT inversion for gε).

= φ(x) (gε is an approximate identity)
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∫ ̂φ(·+ x)(ξ)ĝε(ξ) dξ (FT of translation)

= limε→0

∫
φ(x + y) ̂̂gε(y) dy (̂ shifting)

= limε→0

∫
φ(x + y)gε(−y) dy (FT inversion for gε).

= φ(x) (gε is an approximate identity)

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 26 / 36



Fourier inversion formula on S

̂ shifting: f , g ∈ L1(Rn) =⇒
∫

f ĝ =
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e2πiξx φ̂(ξ)ĝε(ξ) dξ (dom. conv.)

= limε→0
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FT on L2(Rn)

Preservation of inner product:
∫
φψ =

∫
φ̂ψ̂, for φ, ψ ∈ S

Fourier inversion implies
̂̂
ψ = ψ. Use ̂ shifting.

Parseval: f ∈ S: ‖f ‖2 =
∥∥∥f̂

∥∥∥
2
.

S dense in L2(Rn): FT extends to L2 and f → f̂ is an isometry on L2.

By interpolation FT is defined on Lp, 1 ≤ p ≤ 2, and satisfies the
Hausdorff-Young inequality:∥∥∥f̂

∥∥∥
q
≤ Cp‖f ‖p,

1

p
+

1

q
= 1.
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Tempered distributions

Tempered distributions: S ′ is the space of continuous linear
functionals on S.

FT defined on S ′: for u ∈ S ′ we define û(φ) = u(φ̂), for φ ∈ S.

Fourier inversion for S ′: u(φ(x)) = ̂̂u(φ(−x)).

u → û is an isomorphism on S ′

1 ≤ p ≤ ∞ : Lp ⊆ S ′. If f ∈ Lp this mapping is in S ′:

φ→
∫

f φ

Also S ⊆ S ′.
Tempered measures:

∫
(1 + |x |)−k d |µ|(x) <∞, for some k ∈ N.

These are in S ′.
Differentiation defined as: (∂αu)(φ) = (−1)|α|u(∂αφ).

FT of Lp functions or tempered measures defined in S ′
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Examples of tempered distributions and their FT

u = δ0, û = 1

u = Dαδ0. To find its FT

D̂αδ0(φ) = (Dαδ0)(φ̂) = (−1)|α|δ0(D
αφ̂) = (−1)|α|δ0( ̂(−x)αφ(x))

= (−1)|α|δ̂0((−x)αφ(x)) =

∫
xαφ(x)

So D̂αδ0 = xα.

u = xα, û = Dαδ0

u =
∑J

j=1 ajδpj , û(ξ) =
∑J

j=1 aje
2πipjξ.

Poisson Summation Formula (PSF): u =
∑

k∈Zn δk , û = u
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u = xα, û = Dαδ0

u =
∑J

j=1 ajδpj , û(ξ) =
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Proof of the Poisson Summation Formula

φ ∈ S. Define g(x) =
∑

k∈Zn φ(x + k).

g has Zn as a period lattice: g(x + k) = g(x), x ∈ Rn, k ∈ Zn.

The periodization g may be viewed as g : Tn → C.

FT of g lives on T̂n = Zn. The Fourier coefficients are

ĝ(k) =

∫
Tn

∑
m∈Zn

φ(x + m)e−2πikx dx = φ̂(k).

From decay of φ̂ follows that the FS of g(x) converges absolutely and
uniformly and

g(x) =
∑
k∈Zn

φ̂(k)e2πikx .

x = 0 gives the PSF:
∑

k∈Zn φ(k) =
∑

k∈Zn φ̂(k).
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ĝ(k) =

∫
Tn

∑
m∈Zn

φ(x + m)e−2πikx dx = φ̂(k).

From decay of φ̂ follows that the FS of g(x) converges absolutely and
uniformly and

g(x) =
∑
k∈Zn

φ̂(k)e2πikx .

x = 0 gives the PSF:
∑

k∈Zn φ(k) =
∑

k∈Zn φ̂(k).

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 30 / 36



Proof of the Poisson Summation Formula

φ ∈ S. Define g(x) =
∑

k∈Zn φ(x + k).

g has Zn as a period lattice: g(x + k) = g(x), x ∈ Rn, k ∈ Zn.

The periodization g may be viewed as g : Tn → C.

FT of g lives on T̂n = Zn. The Fourier coefficients are
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FT behavior under linear transformation

Suppose T : Rn → Rn is a non-singular linear operator. u ∈ S ′,
v = u ◦ T .

Change of variables formula for integration implies

v̂ =
1

|det T |
û ◦ T−>.

Write Rn = H ⊕ H⊥, H a linear subspace.

Projection onto subspace defined by

(πH f )(h) :=

∫
H>

f (h + x) dx , (h ∈ H).

For ξ ∈ H: π̂H f (ξ) = f̂ (ξ) (Fubini).
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Analyticity of the FT

Compact support: f : R → C, f ∈ L1(R), f (x) = 0 for |x | > R.

FT defined by

f̂ (ξ) =

∫
R

f (x)e−2πiξx dx .

Allow ξ ∈ C, ξ = s + it in the formula.

f̂ (s + it) =

∫
f (x)e2πtxe−2πisx dx

Compact support implies f (x)e2πtx ∈ L1(R), so integral is defined.
Since e−2πixξ is analytic for all ξ ∈ C, so is f̂ (ξ).
Paley–Wiener: f ∈ L2(R). The following are equivalent:
(a) f is the restriction on R of a function F holomorphic in the strip
{z : |=z | < a} which satisfies∫

|F (x + iy)|2 dx ≤ C , (|y | < a)

(b) ea|ξ|f̂ (ξ) ∈ L2(R).
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Application: the Steinhaus tiling problem

Question of Steinhaus: Is there E ⊆ R2 such that no matter how
translated and rotated it always contains exactly one point with
integer coordinates?

Two versions: E is required to be measurable or not

Non-measurable version was answered in the affirmative by Jackson
and Mauldin a few years ago.

Measurable version remains open.

Equivalent form (Rθ is rotation by θ):∑
k∈Z2

1RθE (t + k) = 1, (0 ≤ θ < 2π, t ∈ R2). (5)

We prove: there is no bounded measurable Steinhaus set.

Integrating (5) for t ∈ [0, 1]2 we obtain |E | = 1.

LHS of (5) is the Z2-periodization of 1RθE . Hence 1̂RθE (k) = 0,
k ∈ Z2 \ {0}.
1̂E (ξ) = 0, whenever ξ on a circle through a lattice point
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The circles on which 1̂E must vanish
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Application: the Steinhaus tiling problem: conclusion

Consider the projection f of 1E on R.
E bounded =⇒ f has compact support, say in [−B,B].

For ξ ∈ R we have f̂ (ξ) = 1̂E (ξ, 0), hence

f̂
(√

m2 + n2
)

= 0, (m, n) ∈ Z2 \ {0}.

Landau: The number of integers up to x which are sums of two
squares is ∼ Cx/ log1/2 x .

Hence f̂ has almost R2 zeros from 0 to R.

supp f ⊆ [−B,B] implies
∣∣∣f̂ (z)

∣∣∣ ≤ ‖f ‖1e
2πB|z|, z ∈ C

But such a function can only have O(R) zeros from 0 to R.
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Zeros of entire functions of exponential type

Jensen’s formula: F analytic in the disk {|z | ≤ R}, zk are the zeros
of F in that disk. Then∑

k

log
R

|zk |
=

∫ 1

0
log

∣∣∣F (Re2πiθ)
∣∣∣ dθ.

It follows

#
{
k : |zk | ≤ R

/
e
}
≤

∫ 1

0
log

∣∣∣F (Re2πiθ)
∣∣∣ dθ

Suppose |F (z)| ≤ AeB|z|. Then RHS above is ≤ BR + log A.

Such a function F can therefore have only O(R) zeros in the disk
{|z | ≤ R}.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 36 / 36



Zeros of entire functions of exponential type

Jensen’s formula: F analytic in the disk {|z | ≤ R}, zk are the zeros
of F in that disk. Then∑

k

log
R

|zk |
=

∫ 1

0
log

∣∣∣F (Re2πiθ)
∣∣∣ dθ.

It follows

#
{
k : |zk | ≤ R

/
e
}
≤

∫ 1

0
log

∣∣∣F (Re2πiθ)
∣∣∣ dθ

Suppose |F (z)| ≤ AeB|z|. Then RHS above is ≤ BR + log A.

Such a function F can therefore have only O(R) zeros in the disk
{|z | ≤ R}.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 36 / 36



Zeros of entire functions of exponential type

Jensen’s formula: F analytic in the disk {|z | ≤ R}, zk are the zeros
of F in that disk. Then∑

k

log
R

|zk |
=

∫ 1

0
log

∣∣∣F (Re2πiθ)
∣∣∣ dθ.

It follows

#
{
k : |zk | ≤ R

/
e
}
≤

∫ 1

0
log

∣∣∣F (Re2πiθ)
∣∣∣ dθ

Suppose |F (z)| ≤ AeB|z|. Then RHS above is ≤ BR + log A.

Such a function F can therefore have only O(R) zeros in the disk
{|z | ≤ R}.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 36 / 36



Zeros of entire functions of exponential type

Jensen’s formula: F analytic in the disk {|z | ≤ R}, zk are the zeros
of F in that disk. Then∑

k

log
R

|zk |
=

∫ 1

0
log

∣∣∣F (Re2πiθ)
∣∣∣ dθ.

It follows

#
{
k : |zk | ≤ R

/
e
}
≤

∫ 1

0
log

∣∣∣F (Re2πiθ)
∣∣∣ dθ

Suppose |F (z)| ≤ AeB|z|. Then RHS above is ≤ BR + log A.

Such a function F can therefore have only O(R) zeros in the disk
{|z | ≤ R}.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 36 / 36


