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Groups and Haar measure

Locally compact abelian groups:

Haar measure on G = translation invariant on G: p(A) = pu(A+t).
Unique up to scalar multiple.
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Groups and Haar measure

Locally compact abelian groups:
o Integers Z =4{...,-2,-1,0,1,2,...}
e Finite cyclic group Z, = {0,1,...,m— 1}: addition modm
@ Reals R

Haar measure on G = translation invariant on G: p(A) = pu(A+t).
Unique up to scalar multiple.

@ Counting measure on Z
e Counting measure on Z,, normalized to total measure 1 (usually)

o Lebesgue measure on R
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Groups and Haar measure

Locally compact abelian groups:
Integers Z = {...,—2,-1,0,1,2,...}

e Finite cyclic group Z, = {0,1,...,m— 1}: addition modm
@ Reals R
°

Torus T = R/Z: addition of reals mod1

Haar measure on G = translation invariant on G: p(A) = pu(A+t).
Unique up to scalar multiple.

@ Counting measure on Z
e Counting measure on Z,, normalized to total measure 1 (usually)
o Lebesgue measure on R

@ Lebesgue masure on T viewed as a circle
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Groups and Haar measure

Locally compact abelian groups:
o Integers Z =4{...,-2,-1,0,1,2,...}
e Finite cyclic group Z, = {0,1,...,m— 1}: addition modm
@ Reals R
e Torus T = R/Z: addition of reals mod1l
@ Products: Z9, RY, T x R, etc

Haar measure on G = translation invariant on G: p(A) = pu(A+t).
Unique up to scalar multiple.

@ Counting measure on Z

e Counting measure on Z,, normalized to total measure 1 (usually)
o Lebesgue measure on R

@ Lebesgue masure on T viewed as a circle

@ Product of Haar measures on the components
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Characters and the dual group

o Character is a (continuous) group homomorphism from G to the
multiplicative group U = {z € C : |z| = 1}.
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Characters and the dual group

o Character is a (continuous) group homomorphism from G to the
multiplicative group U = {z € C : |z| = 1}.

o x : G — U satsifies x(h+ g) = x(h)x(g)

@ If x, v are characters then so is x (pointwise product). Write x + v
from now on instead of .
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o Character is a (continuous) group homomorphism from G to the
multiplicative group U = {z € C: |z| = 1}.

o x : G — U satsifies x(h+ g) = x(h)x(g)

@ If x, v are characters then so is x (pointwise product). Write x + v
from now on instead of .

@ Group of characters (written additively) G is the dual group of G
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Characters and the dual group

o Character is a (continuous) group homomorphism from G to the
multiplicative group U = {z € C : |z| = 1}.

X : G — U satsifies x(h+ g) = x(h)x(g)

If x, % are characters then so is x¢ (pointwise product). Write x + ¢
from now on instead of .

Group of characters (written additively) G is the dual group of G

G =7 = G =T: the functions xx(n) = exp(2mixn),x € T
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Characters and the dual group

o Character is a (continuous) group homomorphism from G to the
multiplicative group U = {z € C : |z| = 1}.

X : G — U satsifies x(h+ g) = x(h)x(g)

If x, % are characters then so is x¢ (pointwise product). Write x + ¢
from now on instead of .

Group of characters (written additively) G is the dual group of G

G =7 => G =T: the functions Xx(n)
G =T = G = Z: the functions x(x)
G =R = G = R: the functions xt(x)

exp(2mixn),x € T
exp(2minx),n € Z
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Characters and the dual group

o Character is a (continuous) group homomorphism from G to the
multiplicative group U = {z € C : |z| = 1}.

X : G — U satsifies x(h+ g) = x(h)x(g)
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from now on instead of .
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Characters and the dual group

o Character is a (continuous) group homomorphism from G to the
multiplicative group U = {z € C : |z| = 1}.

X : G — U satsifies x(h+ g) = x(h)x(g)

If x, % are characters then so is x¢ (pointwise product). Write x + ¢
from now on instead of .

Group of characters (written additively) G is the dual group of G

°
o G=7=> G =T: the functions Xx(n) = exp(2mwixn),x € T
o G =T => G = Z: the functions x,(x) = exp(2winx), n € Z
o G=R = G =R: the functions x.(x) = exp(2mitx), t € R
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Characters and the dual group

o Character is a (continuous) group homomorphism from G to the
multiplicative group U = {z € C : |z| = 1}.

X : G — U satsifies x(h+ g) = x(h)x(g)

If x, % are characters then so is x¢ (pointwise product). Write x + ¢
from now on instead of .
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°
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Characters and the dual group

o Character is a (continuous) group homomorphism from G to the
multiplicative group U = {z € C : |z| = 1}.

X : G — U satsifies x(h+ g) = x(h)x(g)

If x, % are characters then so is x¢ (pointwise product). Write x + ¢
from now on instead of .

Group of characters (written additively) G is the dual group of G

°
o G=7=> G =T: the functions Xx(n) = exp(2mwixn),x € T
o G =T => G = Z: the functions x,(x) = exp(2winx), n € Z
o G=R = G =R: the functions x.(x) = exp(2mitx), t € R
® G=2Zm= G =Zp the functions x(n) = exp(27ikn/m), k € Z,
©o G=AxB=G=AxB
o Example: G=T xR = G = Z x R. The characters are
Xnt(X,y) = exp(2mi(nx + ty)).

~

G is compact < G is discrete

@ PONTRYAGIN duality: G=G.
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The Fourier Transform of integrable functions

o f e LYG). Thatis ||f]ly :== [ [F(x)] du(x) < oo
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The Fourier Transform of integrable functions

o feLY(G). Thatis |flly := [¢|F(x)]| dp(x) < oo
o If G is finite then L'(G) is all functions G — C
o The FT of fis f : G — C defined by

o) = /G FOXG) du(x), x € 6
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The Fourier Transform of integrable functions

f e [1(G). Thatis |[f], := [ |F(x)] du(x) < 0o
If G is finite then L'(G) is all functions G — C
The FT of fis f : G — C defined by

o) = /G FOXG) du(x), x € 6

e Example: G = T (“Fourier coefficients"):

f(n) = / f(x)e 2™ dx, necZ
T
e Example: G =R (“Fourier transform"):

(&) = /T f(x)e 2 dx, £eR

e Example: G = Z,, (“Discrete Fourier transform or DFT"):

m—1
~ 1 ..
fk)=— > f)e ™/ keZn

Jj=0
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Elementary properties of the Fourier Transform

o Linearity: )\f/w—L\ug =\ + ug.
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Elementary properties of the Fourier Transform

o Linearity: )\f/w—L\ug =\ + ug.

o Symmetry: f(—x) = f(x), f(x) = f(—x)
@ Real f: then ?(x) = ?(—x)
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Elementary properties of the Fourier Transform

o Linearity: )\f/+\ug =\ + ug.
o Symmetry: f(—x) = f(x), f(x) = f(—x)
@ Real f: then ?(x) = ?(—x)
e Translation: if T € G,§ € G, f(x) = f(x — 7) then
Q) =em-FO. i
Example: G = T: f(x — 0)(n) = e~2""f(n), for € T,n € Z.
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Elementary properties of the Fourier Transform

@ Linearity: )\f+ug )\f—i-,ug

o Symmetry: F(—x) = f(x), F(x) = F(—x)

Real f: then ?(x) = f( x)

Translation: if 7 € G,§ € G, f(x) = f(x — 7) then

RO =em-FO. i

Example: G =T: f(x —6)(n) = *27”'”91‘( ), for0 € T,n e Z.
Modulation: If x,£ € G then X( )F(x)(€) = F(€ = x).
Example: G = R: e2mitxf(x)(€) = F(€ — t).
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Elementary properties of the Fourier Transform

@ Linearity: )\f+ug )\f—i-,ug
o Symmetry: F(—x) = f(x), F(x) = F(—x)
@ Real f: then ?(x) = f( X)
e Translation: if T € G,§ € G, f(x) = f(x — 7) then
RO =em-FO. i
Example: G =T: f(x —6)(n) = *27”'”91‘( ), for0 € T,n e Z.
o Modulation: If y,& € G then X( )F(x)(€) = F(€ = x).
Example: G = R: e2mitxf(x)(€) = F(€ — t)

o f,g € LY(G): their convolution is f x g(x) = [ f(t)g(x — t) du(t).
Then ||« gll; < [|f]l;llgll, and

Frg(€)=7(6)-8(6), €€G
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Orthogonality of characters on compact groups

o If G is compact (= total Haar measure = 1) then characters are in
L1(G), being bounded.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 6 /36



Orthogonality of characters on compact groups

o If G is compact (= total Haar measure = 1) then characters are in
L1(G), being bounded.
o If x € G then

/G X(x) dx = /G \(x + ) de = x(g) /G X(x) dx,

so [ x = 0if x nontrivial, 1 if x is trivial (= 1).
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so [ x = 0if x nontrivial, 1 if x is trivial (= 1).
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Orthogonality of characters on compact groups

o If G is compact (= total Haar measure = 1) then characters are in
L1(G), being bounded.
o If x € G then

/G X(x) dx = /G \(x + ) de = x(g) /G X(x) dx,

so [ x = 0if x nontrivial, 1 if x is trivial (= 1).
o If y,v € G then X(x)¥(—x) is also a character. Hence

bt = [ATeIa = [ xua={ g X5

e Fourier representation (inversion) in Zp: G = Zy = the m

characters form a complete orthonormal set in L2(G):

27le 27rlkx _ 271'ikx
(), e f

[
gl

k=0
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L? of compact G

@ Trigonometric polynomials = finite linear combinations of characters
on G
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L? of compact G

@ Trigonometric polynomials = finite linear combinations of characters
on G

@ Example: G =T. Trig. polynomials are of the type ZLV:_N cke
The least such N is called the degree of the polynomial.

2mikx
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The least such N is called the degree of the polynomial.

@ Example: G = R. Trig. polynomials are of the type Z,’le Cre@2TMX
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L? of compact G

@ Trigonometric polynomials = finite linear combinations of characters
on G

@ Example: G =T. Trig. polynomials are of the type ZLV:_N cke
The least such N is called the degree of the polynomial.

2mikx

@ Example: G = R. Trig. polynomials are of the type Z,’le Cre@2TMX

where \; € R.

o Compact G: STONE - WEIERSTRASS Theorem = trig. polynomials
dense in C(G) (in [|]|)-
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L? of compact G

@ Trigonometric polynomials = finite linear combinations of characters

on G

o Example: G = T. Trig. polynomials are of the type ZLV:_N ce?mike
The least such N is called the degree of the polynomial.

@ Example: G = R. Trig. polynomials are of the type Z,’le Cre@2TMX
where \; € R.

o Compact G: STONE - WEIERSTRASS Theorem = trig. polynomials
dense in C(G) (in [|]|)-

e Fourier representation in L?(G): Compact G: The characters form a
complete ONS. Since C(G) is dense in L?(G):

f :/ _f(x)xdx all f € [2(G), convergence in L(G)
X€EG
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L? of compact G

@ Trigonometric polynomials = finite linear combinations of characters

on G

o Example: G = T. Trig. polynomials are of the type ZLV:_N ce?mike
The least such N is called the degree of the polynomial.

@ Example: G = R. Trig. polynomials are of the type Z,’le Cre@2TMX
where \; € R.

o Compact G: STONE - WEIERSTRASS Theorem = trig. polynomials
dense in C(G) (in [|]|)-

e Fourier representation in L?(G): Compact G: The characters form a
complete ONS. Since C(G) is dense in L?(G):

f :/ _f(x)xdx all f € [2(G), convergence in L(G)
X€EG

@ G necessarily discrete in this case
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[? of compact G, continued

o Compact G: Parseval formula:

| gt ox= [ FoER) av.
G G
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| gt ox= [ FoER) av.
G G

o Compact G: f — f is an isometry from L2(G) onto L2(G).
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[? of compact G, continued

o Compact G: Parseval formula:

| gt ox= [ FoER) av.
G G

o Compact G: f — f is an isometry from L2(G) onto L2(G).
o Example: G =T

/T F(x)g(x)dx =Y _f(k)g(k), f,ge L(T).

keZ
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[? of compact G, continued

o Compact G: Parseval formula:

| gt ox= [ FoER) av.
G G

o Compact G: f — f is an isometry from L2(G) onto L2(G).
o Example: G =T

/T F(x)g(x)dx =Y _f(k)g(k), f,ge L(T).

keZ

e Example: G =Z,

), all f,g:Zm—C
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Triple correlations in Z,: an application

@ Problem of significance in (a) crystallography, (b) astrophysics:
determine a subset E C Z, from its triple correlation:

Ne(a,b) = #{x€Zpn:x,x+a,x+beE}, abecZ,
= Z].E ]-E x—l—a)lE(x+b)

XEZin

Counts number of occurences of translated 3-point patterns {0, a, b}.
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@ Problem of significance in (a) crystallography, (b) astrophysics:
determine a subset E C Z, from its triple correlation:

Ne(a,b) = #{x€Zpn:x,x+a,x+beE}, abecZ,
= Z ]-E ]-E x—l—a)lE(x+b)
XEZin

Counts number of occurences of translated 3-point patterns {0, a, b}.
@ E can only be determined up to translation: E and E + t have the
same N(-,-).
@ For general n it has been proved that N(-,-) cannot determine E even
up to translation (non-trivial).
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Triple correlations in Z,: an application

@ Problem of significance in (a) crystallography, (b) astrophysics:
determine a subset E C Z, from its triple correlation:

Ne(a,b) = #{x€Zpn:x,x+a,x+beE}, abecZ,
= ZIE ]-E x—l—a)lE(x+b)

XEZin

Counts number of occurences of translated 3-point patterns {0, a, b}.
@ E can only be determined up to translation: E and E + t have the
same N(-,-).
@ For general n it has been proved that N(-,-) cannot determine E even
up to translation (non-trivial).
@ Special case: E can be determined up to translation from N(,-) if
n = pis a prime.
o Fourier transform of Ng : Z, x Z, — R is easily computed:

Ne(€.n) = Le(©OTe(mTe(—(E +1)), &n € Zn
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Triple correlations in Z,: an application (continued)

o If Ne = N for E, F C Z, then

1e(O)1e(1e(—(E+m) = TR IF(IF(—(E+n)), &nEZy (1)
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Triple correlations in Z,: an application (continued)

o If Ne = N for E, F C Z, then

1e(O)1e(1e(—(E+m) = TR IF(IF(—(E+n)), &nEZy (1)

@ Setting £ =1 = 0 we deduce #E = #F.
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Triple correlations in Z,: an application (continued)

o If Ne = N for E, F C Z, then

1e(O)1e(1e(—(E+m) = TR IF(IF(—(E+n)), &nEZy (1)

@ Setting £ =1 = 0 we deduce #E = #F.
o Setting = 0, and using f(—x) = f(x) for real f, we get ‘i;‘ = ’f;‘
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Triple correlations in Z,: an application (continued)

o If Ne = N for E, F C Z, then

1E(O)Te(MIE(—(€+n) = TrEOTFMIF(—(E+n)), &n € Zy (1)
@ Setting £ =1 = 0 we deduce #E = #F.

o Setting = 0, and using f(—x) = f(x) for real f, we get ‘i;‘ = ’f;‘
o If 17 is never 0 we divide (1) by its RHS to get

$(E)p(n) = ¢(€ + 1), where ¢ =1 /1F (2)
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Triple correlations in Z,: an application (continued)

o If Ne = N for E, F C Z, then

1E(O)Te(MIE(—(€+n) = TrEOTFMIF(—(E+n)), &n € Zy (1)
@ Setting £ =1 = 0 we deduce #E = #F.

o Setting = 0, and using f(—x) = f(x) for real f, we get ‘i;‘ = ’f;‘
o If 17 is never 0 we divide (1) by its RHS to get

$(E)p(n) = ¢(€ + 1), where ¢ =1 /1F (2)

@ Hence ¢ : Z, — C is a character and iE = qﬁi;.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 10 / 36



Triple correlations in Z,: an application (continued)

o If Ne = N for E, F C Z, then

1E(O)Te(MIE(—(€+n) = TrEOTFMIF(—(E+n)), &n € Zy (1)
@ Setting £ =1 = 0 we deduce #E = #F.

=

o Setting = 0, and using f(—x) = f(x) for real f, we get ‘i;‘ = ’f;‘

o If 17 is never 0 we divide (1) by its RHS to get

$(E)p(n) = ¢(€ + 1), where ¢ =1 /1F (2)

@ Hence ¢ : Z, — C is a character and iE = qﬁi;.
@ Since Z,, = Zn we have ¢(§) = e2mitE/n for some t € Z,
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Triple correlations in Z,: an application (continued)

If Ne = N for E, F C 7Z, then

1e(O)1e(1e(—(E+m) = TR IF(IF(—(E+n)), &nEZy (1)

Setting £ =7 = 0 we deduce #E = #F.
Setting n = 0, and using /f\(—x) = ?(x) for real f, we get ‘i;‘ = ’f;‘

If 1F is never 0 we divide (1) by its RHS to get

$(E)p(n) = ¢(€ + 1), where ¢ =1 /1F (2)

Hence ¢ : Z, — C is a character and iE = qﬁi;.
Since Z,, = Zn we have ¢(&) = e2mitE/n for some t € Z,
Hence E=F +t
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Triple correlations in Z,: an application (continued)

If Ne = N for E, F C 7Z, then

1e(O)1e(1e(—(E+m) = TR IF(IF(—(E+n)), &nEZy (1)

Setting £ =7 = 0 we deduce #E = #F.
Setting n = 0, and using /f\(—x) = ?(x) for real f, we get ‘i;‘ = ’f;‘

If 1F is never 0 we divide (1) by its RHS to get

$(E)p(n) = ¢(€ + 1), where ¢ =1 /1F (2)

Hence ¢ : Z, — C is a character and iE = qﬁi;.
Since Z,, = Zn we have ¢(&) = e2mitE/n for some t € Z,
Hence E=F +t

So Ng determines E up to translation if 1£ is never 0
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Triple correlations in Z,: an application (conclusion)

@ Suppose n= pis a prime, E C Z,. Then

iE(f) = = Z(Cg)s, (= e 2m/P is a p-root of unity. (3)
seE
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@ Each (%, € #0, is a primitive p-th root of unity itself.
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Triple correlations in Z,: an application (conclusion)

@ Suppose n= pis a prime, E C Z,. Then
- 1 )
1£(§) = = Z(Cg)s, ¢ = e 2m/P is a p-root of unity. (3)
seE

@ Each (%, € #0, is a primitive p-th root of unity itself.

o All powers (¢%)* are distinct, so iE(§) is a subset sum of all primitive
p-th roots of unity (£ # 0).
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Triple correlations in Z,: an application (conclusion)

@ Suppose n= pis a prime, E C Z,. Then

— 1 .
1:(¢) = - Z(Cg)s, ¢ = e 2/P is a p-root of unity. (3)
seE
@ Each (%, € #0, is a primitive p-th root of unity itself.
o All powers (¢%)* are distinct, so 1(£) is a subset sum of all primitive
p-th roots of unity (£ # 0).

@ The polynomial 1 + x + x? 4 --- + xP~L is the minimal polynomial
over QQ of each primitive root of unity (there are p — 1 of them).
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Triple correlations in Z,: an application (conclusion)

Suppose n = p is a prime, E C Z,. Then

iE(f) = = Z(Cg)s, (= e 2m/P is a p-root of unity. (3)
seE

Each (¢, € #0, is a primitive p-th root of unity itself.

All powers (¢%)* are distinct, so iE(§) is a subset sum of all primitive
p-th roots of unity (£ # 0).

The polynomial 1 + x + x% + - - - + xP~1 is the minimal polynomial
over QQ of each primitive root of unity (there are p — 1 of them).

It divides any polynomial in Q[x] which vanishes on some primitive
p-th root of unity
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Triple correlations in Z,: an application (conclusion)

Suppose n = p is a prime, E C Z,. Then

iE(f) = = Z(Cg)s, (= e 2m/P is a p-root of unity. (3)
seE

@ Each (%, € #0, is a primitive p-th root of unity itself.

o All powers (¢%)* are distinct, so iE(f) is a subset sum of all primitive
p-th roots of unity (£ # 0).

@ The polynomial 1 + x + x? 4 --- + xP~L is the minimal polynomial
over QQ of each primitive root of unity (there are p — 1 of them).

e It divides any polynomial in Q[x] which vanishes on some primitive
p-th root of unity

@ The only subset sums of all roots of unity which vanish are the empty
and the full sum (E = or E =Z,).
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Triple correlations in Z,: an application (conclusion)

Suppose n = p is a prime, E C Z,. Then

iE(f) = = Z(Cg)s, (= e 2m/P is a p-root of unity. (3)
seE

@ Each (%, € #0, is a primitive p-th root of unity itself.

o All powers (¢%)* are distinct, so iE(f) is a subset sum of all primitive
p-th roots of unity (£ # 0).

@ The polynomial 1 + x + x? 4 --- + xP~L is the minimal polynomial
over QQ of each primitive root of unity (there are p — 1 of them).

e It divides any polynomial in Q[x] which vanishes on some primitive
p-th root of unity

@ The only subset sums of all roots of unity which vanish are the empty
and the full sum (E = or E =Z,).

@ So in Zj, the triple correlation Ng(-,-) determines E up to translation.
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The basics of the FT on the torus (circle) T = R/27Z

0 1< p<q<= LIYT) C LP(T): nested LP spaces. True on compact
groups.
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The basics of the FT on the torus (circle) T = R/27Z

0 1< p<q<= LIYT) C LP(T): nested LP spaces. True on compact

groups.
o € LYT): we write f(x)~> %0 f(k)e?™** to denote the
Fourier series of f. No claim of convergence is made.
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The basics of the FT on the torus (circle) T = R/27Z

0 1< p<q<= LIYT) C LP(T): nested LP spaces. True on compact

groups.
o € LYT): we write f(x)~> %0 f(k)e?™** to denote the
Fourier series of f. No claim of convergence is made.
2mikx

@ The Fourier coefficients of f(x) = e is the sequence ?(n) = k.-
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The basics of the FT on the torus (circle) T = R/27Z

1<p<q<= L9YT) C LP(T): nested LP spaces. True on compact
groups.
f € LX(T): we write f(x) ~ 3S2°° __F(k)e*™*< to denote the

k=—o00
Fourier series of f. No claim of convergence is made.

27ikx

@ The Fourier coefficients of f(x) = e is the sequence ?(n) = k.-
The Fourier series of a trig. poly. f(x) = ZQI:fN axe?™* is the

sequence ...,0,0,a_n,a-n+1,---,40,.--,an,0,0,....
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The basics of the FT on the torus (circle) T = R/27Z

1<p<q<= L9YT) C LP(T): nested LP spaces. True on compact
groups.
f € LX(T): we write f(x) ~ 3S2°° __F(k)e*™*< to denote the

k=—o00
Fourier series of f. No claim of convergence is made.

27ikx

@ The Fourier coefficients of f(x) = e is the sequence ?(n) = k.-
The Fourier series of a trig. poly. f(x) = ZQI:fN axe?™* is the

sequence ...,0,0,a_n,a-n+1,---,40,.--,an,0,0,....

e Symmetric partial sums of the Fourier series of f:
Sw(fix) = T Flk)e2
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The basics of the FT on the torus (circle) T = R/27Z

0 1< p<q<= LIYT) C LP(T): nested LP spaces. True on compact
groups.

o € LYT): we write f(x)~> %0 f(k)e?™** to denote the
Fourier series of f. No claim of convergence is made.

27ikx

@ The Fourier coefficients of f(x) = e is the sequence ?(n) = k.-

@ The Fourier series of a trig. poly. f(x) = ZQI:,N axe?™* is the
sequence ...,0,0,a_n,a-n+1,---,40,.--,an,0,0,....

e Symmetric partial sums of the Fourier series of f:
SW(Fix) = LAy F(k)e2 e

e From ﬂ\g —=F-Z we get easily Sn(f;x) = f(x) * Dy(x), where

N

DN(X) — Z eZTFikX —

k=—N

sin2m(N + 3)x

_ (DIRICHLET kernel of order N’
sin mx
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The DIRICHLET kernel

The Dirichlet kernel Dy(x) for N = 10
25 T T \

| |
-0.4 -0.2 0 0:2 04
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Pointwise convergence

e Important: ||Dy||; > Clog N, as N — oo
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Pointwise convergence

e Important: ||Dy||; > Clog N, as N — oo

o Ty :f — Sy(f;x) = Dy * f(x) is a (continuous) linear functional
C(T) — C. From the inequality ||Dy * f|| . < [|Dnl|1]Ifll
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Pointwise convergence

e Important: ||Dy||; > Clog N, as N — oo

o Ty :f — Sy(f;x) = Dy * f(x) is a (continuous) linear functional
C(T) — C. From the inequality ||Dy * f|| . < [|Dnl|1]Ifll

o || Tn|| = ||Dnl|; is unbounded
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Pointwise convergence

Important: ||Dy|; > Clog N, as N — oo

Tn : f — Sn(f; x) = Dy * f(x) is a (continuous) linear functional
C(T) — C. From the inequality ||Dy * f|| . < [|Dnl|1]Ifll

| Tn|| = ||Dnll; is unbounded

BANACH-STEINHAUS (uniform boundedness principle) —>

Given x there are many continuous functions f such that Ty(f) is
unbounded
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Pointwise convergence

e Important: ||Dy||; > Clog N, as N — oo

o Ty :f — Sy(f;x) = Dy * f(x) is a (continuous) linear functional
C(T) — C. From the inequality ||Dy * f|| . < [|Dnl|1]Ifll

o || Tn|| = ||Dnl|; is unbounded

o BANACH-STEINHAUS (uniform boundedness principle) —>
Given x there are many continuous functions f such that Ty(f) is
unbounded

o Consequence: In general Sy(f; x) does not converge pointwise to
f(x), even for continuous f
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Summability

@ Look at the arithmetical means of Sy/(f; x)

;N
on(fix) = —— an(f; x) = Ky * f(x)

N—i—1n:0
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Summability

@ Look at the arithmetical means of Sy/(f; x)

N
on(Fix) = /\111 S Su(Fi %) = Ky + F(x)
n=0

e The FEJER kernel Ky(x) is the mean of the DIRICHLET kernels

N . 2
|n| omi 1 sin(N + 1)x
K — 1— winx _ > 0.
w() Z}( N+1)° N+1\  sinmx =0
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Summability

@ Look at the arithmetical means of Sy/(f; x)

N

mﬂﬁx)zlvil§%54ﬁxy:KN*fu)

e The FEJER kernel Ky(x) is the mean of the DIRICHLET kernels

N . 2
|n| omi 1 sin(N + 1)x
K — 1— winx _ > 0.
w() nZ%( N+1)° N+1\  sinmx =0

o Ky(x) is an approximate identity:

( ) fT KN dX = KN(O) ]_
(b) [[Kn||; is bounded (||Kn||; = 1, from nonnegativity and (a)),
(c) for any € > 0 we have fX s [Kn(x)ldx — 0, as N — oo
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The FEJER kernel

The Fej'er kernel Dy(x) for N = 10
12 T T \

10 - -

0 —l et | I o

-0.4 -0.2 0 0:2 0.4
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Summability (continued)

@ Ky approximate identity = Ky * f(x) — f(x), in some Banach
spaces. These can be:
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Summability (continued)

@ Ky approximate identity = Ky * f(x) — f(x), in some Banach
spaces. These can be:

e C(T) normed with ||-||: If f € C(T) then on(f;x) — f(x)
uniformly in T.
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Summability (continued)

@ Ky approximate identity = Ky * f(x) — f(x), in some Banach
spaces. These can be:

e C(T) normed with ||-||: If f € C(T) then on(f;x) — f(x)
uniformly in T.

o LP(T), 1 < p <ooc: If f € LP(T) then |lon(f;x) — f(x)[[, — 0
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Summability (continued)

@ Ky approximate identity = Ky * f(x) — f(x), in some Banach
spaces. These can be:

e C(T) normed with ||-||: If f € C(T) then on(f;x) — f(x)
uniformly in T.

o LP(T), 1 < p <ooc: If f € LP(T) then |lon(f;x) — f(x)[[, — 0

e C"(T), all n-times C-differentiable functions, normed with
Ifller = o IF¥]l.,
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Summability (continued)

@ Ky approximate identity = Ky * f(x) — f(x), in some Banach
spaces. These can be:

e C(T) normed with ||-||: If f € C(T) then on(f;x) — f(x)
uniformly in T.

o LP(T), 1 < p <ooc: If f € LP(T) then |lon(f;x) — f(x)[[, — 0

e C"(T), all n-times C-differentiable functions, normed with
Ifllen = 5o 7

e Summability implies uniqueness: the Fourier series of f € L1(T)
determines the function.
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Summability (continued)

@ Ky approximate identity = Ky * f(x) — f(x), in some Banach
spaces. These can be:

e C(T) normed with ||-||: If f € C(T) then on(f;x) — f(x)
uniformly in T.

o LP(T), 1 < p <ooc: If f € LP(T) then |lon(f;x) — f(x)[[, — 0

e C"(T), all n-times C-differentiable functions, normed with
Ifllen = 5o 7

e Summability implies uniqueness: the Fourier series of f € L1(T)
determines the function.

@ Another consequence: trig. polynomials are dense in
LP(T), C(T), C™(T)
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Summability (continued)

Ky approximate identity = Ky * f(x) — f(x), in some Banach
spaces. These can be:

C(T) normed with ||-|| : If f € C(T) then on(f; x) — f(x)
uniformly in T.

LP(T), 1 < p < oo: If f € LP(T) then [lon(f;x) — f(x)[|, = 0
C"(T), all n-times C-differentiable functions, normed with
fllen = ko 79l

Summability implies uniqueness: the Fourier series of f € L}(T)
determines the function.

Another consequence: trig. polynomials are dense in

LP(T), C(T), C™(T)

Another important summability kernel: the POISSON kernel

P(r,x) = g rke?™kx 0 < r < 1: absolute convergence obvious
ke

Significant for the theory of analytic functions.
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The decay of the Fourier coefficients at oo

e Obvious: /f\(n) <|Iflly
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The decay of the Fourier coefficients at oo

e Obvious: ?(n) <|Iflly

o RIEMANN-LEBESGUE Lemma: lim|,_o f(n)=0if f € L1(T).
Obviously true for trig. polynomials and they are dense in L1(T).
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o RIEMANN-LEBESGUE Lemma: lim|,_o f(n)=0if f € L1(T).
Obviously true for trig. polynomials and they are dense in L1(T).

e Can go to 0 arbitrarily slowly if we only assume f € L.
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The decay of the Fourier coefficients at oo

e Obvious: ?(n) <|Iflly

o RIEMANN-LEBESGUE Lemma: lim|,_o f(n)=0if f € L1(T).
Obviously true for trig. polynomials and they are dense in L1(T).

e Can go to 0 arbitrarily slowly if we only assume f € L.
o f(x)= [y g(t)dt, where [g=0: f(n) = s2-2(n) (Fubini)
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The decay of the Fourier coefficients at oo

e Obvious: ?(n) <|Iflly

RIEMANN-LEBESGUE Lemma: limj,_q, f(n)=0if f € L1(T).
Obviously true for trig. polynomials and they are dense in L1(T).

Can go to 0 arbitrarily slowly if we only assume f € L!.

= 5 g(t) dt, where [ g=0: f(n) = -2 (n) (Fubini)
@ Previous implies: f(|n|) = —f(—|n|) >0= Zn;ﬁo n)/n < co.
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The decay of the Fourier coefficients at oo

e Obvious: ?(n) <|Iflly

RIEMANN-LEBESGUE Lemma: lim),_ o f(n)=0if f € L1(T).
Obviously true for trig. polynomials and they are dense in L1(T).

Can go to 0 arbitrarily slowly if we only assume f € L!.
f(x) = [y g(t)dt, where [ g =0: f(n) = s2-2(n) (Fubini)
o Previous implies: f(|n|) = —f(—|n|) > 0 = > n£0 ?(n)/n < 00.

sinnx : H ;
>_n>0 Jogn is NOt a Fourier series.
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The decay of the Fourier coefficients at oo

e Obvious: ?(n) <|Iflly

RIEMANN-LEBESGUE Lemma: lim),_ o f(n)=0if f € L1(T).
Obviously true for trig. polynomials and they are dense in L1(T).

Can go to 0 arbitrarily slowly if we only assume f € L!.
f(x) = [y g(t)dt, where [ g =0: f(n) = s2-2(n) (Fubini)
o Previous implies: f(|n|) = —f(—|n|) > 0 = > n£0 ?(n)/n < 00.

sinnx : H ;
>_n>0 Jogn is NOt a Fourier series.

e f is an integral :>?(n) = 0(1/n): the “smoother” f is the better
decay for the FT of f
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The decay of the Fourier coefficients at oo

e Obvious: ?(n) <|Iflly

RIEMANN-LEBESGUE Lemma: lim),_ o f(n)=0if f € L1(T).
Obviously true for trig. polynomials and they are dense in L1(T).

Can go to 0 arbitrarily slowly if we only assume f € L!.
f(x) = [y g(t)dt, where [ g =0: f(n) = s2-2(n) (Fubini)
o Previous implies: f(|n|) = —f(—|n|) > 0 = > n£0 ?(n)/n < 00.

sinnx : H ;
>_n>0 Jogn is NOt a Fourier series.

e f is an integral :>?(n) = 0(1/n): the “smoother” f is the better
decay for the FT of f

f € C?(T) = absolute convergence for the Fourier Series of f.
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The decay of the Fourier coefficients at oo

e Obvious: ?(n) <|Iflly

o RIEMANN-LEBESGUE Lemma: lim|,_ f(n)=0if f € L1(T).
Obviously true for trig. polynomials and they are dense in L1(T).

e Can go to 0 arbitrarily slowly if we only assume f € L.
o f(x)= [y g(t)dt, where [g=0: f(n) = s2-2(n) (Fubini)
o Previous implies: f(|n|) = —f(—|n|) > 0 = > n£0 ?(n)/n < 00.

sin nx

® > >0 Jogn is not a Fourier series.

e f is an integral :>?(n) = 0(1/n): the “smoother” f is the better
decay for the FT of f

e f € C?(T) = absolute convergence for the Fourier Series of f.
@ Another condition that imposes “decay”:
~ 2
fel2(T)= Y, f(n)’ < 0.
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Interpolation of operators

@ T is bounded linear operator on dense subsets of LP! and LP2:

1Tl < Gllfll,, 1TFg, < GlIfll,

p1’
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Interpolation of operators

@ T is bounded linear operator on dense subsets of LP! and LP2:

1Tl < Gllfll,, 1TFg, < GlIfll,

p1’

@ RIESZ-THORIN interpolation theorem: T : LP — L9 for any p
between p1, p2 (all p's and g's > 1).
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Interpolation of operators

@ T is bounded linear operator on dense subsets of LP! and LP2:

1Tl < Gllfll,, 1TFg, < GlIfll,

p1’
@ RIESZ-THORIN interpolation theorem: T : LP — L9 for any p
between p1, p2 (all p's and g's > 1).

@ p and g are related by:
1 1 1 1 1

1
—=t—4+(1-t)— = —=t—+(1-1t)—
p P1 P2 q a1 az
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Interpolation of operators

@ T is bounded linear operator on dense subsets of LP! and LP2:

1Tl < Gllfll,, 1TFg, < GlIfll,

p1’

@ RIESZ-THORIN interpolation theorem: T : LP — L9 for any p
between p1, p2 (all p's and g's > 1).

@ p and g are related by:

1 1 1 1 1 1
—=t—4+(1-t)— = —=t—+(1-1t)—
p P1 P2 q a1 az

]__
Tl re < CECSY
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Interpolation of operators

@ T is bounded linear operator on dense subsets of LP! and LP2:

1Tl < Gllfll,, 1TFg, < GlIfll,

p1’

@ RIESZ-THORIN interpolation theorem: T : LP — L9 for any p
between p1, p2 (all p's and g's > 1).

@ p and g are related by:

1 1 1 1 1 1
—=t—4+(1-t)— = —=t—+(1-1t)—
p P1 P2 q a1 az
1—
o ITlloo < CHCET0
@ The exponents p, g, ... are allowed to be co.
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Interpolation of operators: the 1/p, 1/q plane

1
(1/p1,1/q1)
(1/p2,1/q2)
0
0 1/p 1
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The Hausdorff-Young inequality

@ HAUSDORFF-YOUNG: Suppose 1 < p <2, % + % =1, and
f € LP(T). It follows that

7

oy < Coll sy
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The Hausdorff-Young inequality

@ HAUSDORFF-YOUNG: Suppose 1 < p <2, % + % =1, and
f € LP(T). It follows that

7

oy < Coll sy

o False if p > 2.
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The Hausdorff-Young inequality

@ HAUSDORFF-YOUNG: Suppose 1 < p <2, % + % =1, and
f € LP(T). It follows that

g

oy < Coll sy

o False if p > 2.
o Clearly true if p =1 (trivial) or p = 2 (Parseval).
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The Hausdorff-Young inequality

@ HAUSDORFF-YOUNG: Suppose 1 < p <2, % + % =1, and
f € LP(T). It follows that

g

oy < Coll sy

False if p > 2.

Clearly true if p =1 (trivial) or p = 2 (Parseval).

Use RIESZ-THORIN interpolation for 1 < p < 2 for the operator
f — f from LP(T) — L9(Z).
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An application: the isoperimetric inequality

@ Suppose I is a simple closed curve in the plane with perimeter L
enclosing area A.

1 . . o .
AL 4—L2 (isoperimetric inequality)
7r

Equality holds only when T is a circle.
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An application: the isoperimetric inequality

@ Suppose I is a simple closed curve in the plane with perimeter L
enclosing area A.

1 . . o .
AL 4—L2 (isoperimetric inequality)
7r

Equality holds only when T is a circle.
e WIRTINGER's inequality: if f € C°°(T) then

/01 )f(x) —?(0)‘2dx < 4712/01 |F()|? dx. (4)
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An application: the isoperimetric inequality

@ Suppose I is a simple closed curve in the plane with perimeter L
enclosing area A.

1 . . o .
AL 4—L2 (isoperimetric inequality)
7r

Equality holds only when T is a circle.
e WIRTINGER's inequality: if f € C°°(T) then

/01 )f(x) —?(0)‘2dx < 4712/01 |F()|? dx. (4)

@ By smoothness f(x) equals its Fourier series and so does
f'(x) = 2mi >, nf(n)e?™
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An application: the isoperimetric inequality

@ Suppose I is a simple closed curve in the plane with perimeter L
enclosing area A.

1 . . o .
AL 4—L2 (isoperimetric inequality)
7r

Equality holds only when T is a circle.
e WIRTINGER's inequality: if f € C°°(T) then

/01 ) —?(0)‘2dx < 41/01 |F()|? dx. (4)

2

@ By smoothness f(x) equals its Fourier series and so does
f'(x) = 2mi >, nf(n)e?™

o FT is an isometry (Parseval) so LHS of (4)is 3_, o ‘?(n)

RHS is 3,0 n|f(n)

2
‘ while the

2
so (4) holds.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 22 / 36



An application: the isoperimetric inequality

@ Suppose I is a simple closed curve in the plane with perimeter L
enclosing area A.

1 . . o .
AL 4—L2 (isoperimetric inequality)
7r

Equality holds only when T is a circle.
e WIRTINGER's inequality: if f € C*°(T) then

/01 )f(x) —?(0)‘2dx < 4712/01 |F()|? dx. (4)

@ By smoothness f(x) equals its Fourier series and so does
f'(x) = 2mi >, nf(n)e?™

o FT is an isometry (Parseval) so LHS of (4)is 3_, o ‘?(n)
~ 2
RHS is >, .o n|f(n)| so (4) holds.
e Equality in (4) precisely when f(x) = f(—1)e~2™x 4 £(0) + f(1)e?".
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An application: the isoperimetric inequality (continued)

o HurwiITZ' proof. First assume I is smooth, has L = 1.
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An application: the isoperimetric inequality (continued)

o HurwiITZ' proof. First assume I is smooth, has L = 1.
e Parametrization of I': (x(s),y(s)), 0 <s <1 w.r.t. arc length s
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An application: the isoperimetric inequality (continued)

o HurwiITZ' proof. First assume I is smooth, has L = 1.
e Parametrization of I': (x(s),y(s)), 0 <s <1 w.r.t. arc length s
° x,y € C(T), (X(s))*+(¥'(s))*=1.
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An application: the isoperimetric inequality (continued)

o HurwiITZ' proof. First assume I is smooth, has L = 1.

e Parametrization of I': (x(s),y(s)), 0 <s <1 w.r.t. arc length s
° x,y € CO(T), (X(s))+(¥'(s))*=1.

o GREEN's Theorem = area A = fol x(s)y'(s) ds:

A = / (x(5) = (O)y'(5) =
= o [ @a(9) RO + ¥ (5 — (2n(x(5) ~ 7(0) - ¥ (5)?
1/ar / 47%(x(s) — %(0))2 + y/(5)? (drop last term)

1/47r/x’(s)2 +y'(s)?> (WIRTINGER's ineq)
= 1/47r

IN

IN
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An application: the isoperimetric inequality (continued)

o HurwiITZ' proof. First assume I is smooth, has L = 1.

e Parametrization of I': (x(s),y(s)), 0 <s <1 w.r.t. arc length s
° x,y € CO(T), (X(s))+(¥'(s))*=1.

o GREEN's Theorem = area A = fol x(s)y'(s) ds:

A = / (x(5) = (O)y'(5) =
= o [ @a(9) RO + ¥ (5 — (2n(x(5) ~ 7(0) - ¥ (5)?
< 1far / 47%(x(s) — %(0))2 + y/(5)? (drop last term)

< 1/47r/x’(s)2 +y'(s)?> (WIRTINGER's ineq)
= 1/47r

@ For equality must have x(s) = acos2ws + bsin27s + c,
y'(s) = 27m(x(s) — x(0)). So x(s)? + y(s)? constant if ¢ = 0.
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Fourier transform on R”"

o Initially defined only for f € L}(R"). ?(5) = Jn f(x)e™2miEx dx.

Follows: H?H <||fll;- f is continuous.
oo
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Fourier transform on R”"

o Initially defined only for f € L}(R"). ?(5) = Jn f(x)e™2miEx dx.
Follows: H?H <||fll;- f is continuous.

@ Trig. polynomials are not dense anymore in the usual spaces.
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Fourier transform on R”"

o Initially defined only for f € L}(R"). ?(f) = Jn f(x)e™2miEx dx.
Follows: H?H <||fll;- f is continuous.

@ Trig. polynomials are not dense anymore in the usual spaces.
o But RIEMANN-LEBESGUE is true. First for indicator function of an
interval
[a1, b1] X -+ x [an, bn]-
Then approximate an L! function by finite linear combinations of
such.
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Fourier transform on R”"

o Initially defined only for f € L}(R"). A = Jan F( )e2miEX dx.
Follows: Hf” <||fll;- f is continuous.
o0

@ Trig. polynomials are not dense anymore in the usual spaces.

o But RIEMANN-LEBESGUE is true. First for indicator function of an
interval
[al, bl] X e X [an, bn].

Then approximate an L! function by finite linear combinations of

such.

e Multi-index notation a = (a1, ..., a,) € N™
@) |la| =a1 4+ -+ ap.
(b) x* —'Xf1X§2 X

(c) 0% = (9/D1)™ - - (0/Dp)
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Fourier transform on R”"

o Initially defined only for f € L}(R"). A = Jan F( )e2miEX dx.
Follows: Hf” <||fll;- f is continuous.
o0

@ Trig. polynomials are not dense anymore in the usual spaces.

o But RIEMANN-LEBESGUE is true. First for indicator function of an
interval
[al, bl] X e X [an, b,,].

Then approximate an L! function by finite linear combinations of

such.
e Multi-index notation a = (a1, ..., a,) € N™
(@) laf=a1+ -+ an.

(b) x* —xf‘lxg‘2 < X

(c) 0* = 6/81 )| 6/8 )&n
o Diff operators DV ¢ := 27” 8/8xj D¢ = 1/27ri)|0‘|60‘_

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 24 / 36



SCHWARTZ functions on R”

e LP(R") spaces are not nested.
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SCHWARTZ functions on R”

e LP(R™) spaces are not nested.
o Not clear how to define f for f € L2.
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SCHWARTZ functions on R”

e LP(R™) spaces are not nested.
o Not clear how to define f for f € [2.
@ SCHWARTZ class S: those ¢ € C*°(R") s.t. for all multiindices

[@llay = sup [x70%¢(x)] < oc.
X n

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 25 / 36



SCHWARTZ functions on R”

e LP(R™) spaces are not nested.
o Not clear how to define f for f € L2.
@ SCHWARTZ class S: those ¢ € C*°(R") s.t. for all multiindices
[6]lq := sup [x70%G(x)| < o0
xERN
o The |||, ., are seminorms. They determine the topology of S.
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SCHWARTZ functions on R”

LP(R") spaces are not nested.
Not clear how to define 7 for f € L2.
SCHWARTZ class S: those ¢ € C*°(R") s.t. for all multiindices v,y

[@llay = sup [x70%¢(x)] < oc.
X n

The ||¢||,, ., are seminorms. They determine the topology of S.
GR(R") C S
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SCHWARTZ functions on R”

e LP(R™) spaces are not nested.
o Not clear how to define f for f € [2.
@ SCHWARTZ class S: those ¢ € C*°(R") s.t. for all multiindices

[@llay = sup [x70%¢(x)] < oc.
X n

The ||¢||,, ., are seminorms. They determine the topology of S.
GR(R") C S

Easy to see that Di(¢)(¢) = §¢(€) and x6(x)(€) = ~DIG(£).
More generally £*DY6(€) = D*(—x)T6(x)(€).
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SCHWARTZ functions on R”

e LP(R™) spaces are not nested.
o Not clear how to define f for f € [2.
@ SCHWARTZ class S: those ¢ € C*°(R") s.t. for all multiindices

[@llay = sup [x70%¢(x)] < oc.
X n

The ||¢||,, ., are seminorms. They determine the topology of S.
GR(R") C S

Easy to see that Di(9)(¢) = (&) and x(x)(€) = —D/o(&).

More generally §°‘D7$(§) = Do(—x)7p(x)(€).
¢ €S => ¢ € S (smoothness = decay, decay = smoothness)
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SCHWARTZ functions on R”

e LP(R™) spaces are not nested.
o Not clear how to define f for f € [2.
@ SCHWARTZ class S: those ¢ € C*°(R") s.t. for all multiindices

[@llay = sup [x70%¢(x)] < oc.
X n

o The |||, ., are seminorms. They determine the topology of S.

o (P(RM CS

o Easy to see that DI(9)(¢) = §0(¢) and x6(x)(€) = ~DIG(¢).
More generally £4D7¢(&) = D(—x)7p(x)(€).

0o peES=0€S (smoothness — decay, decay = smoothness)

@ Fourier inversion formula o(x f¢ )emiex d¢.

Can also write as gb( x) = qﬁ(x).
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SCHWARTZ functions on R”

e LP(R™) spaces are not nested.
o Not clear how to define f for f € [2.
@ SCHWARTZ class S: those ¢ € C*°(R") s.t. for all multiindices

[@llay = sup [x70%¢(x)] < oc.
X n

o The |||, ., are seminorms. They determine the topology of S.

o (P(RM CS

o Easy to see that DI(9)(¢) = §0(¢) and x6(x)(€) = ~DIG(¢).
More generally £4D7¢(&) = D(—x)7p(x)(€).

0o peES=0€S (smoothness — decay, decay = smoothness)

@ Fourier inversion formula o(x f¢ )emiex d¢.
Can also write as gb( x) = qﬁ(x).

@ We first show its validity for ¢ € S.
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Fourier inversion formula on S

o “shifting: f,g € LX(R") = [ fg = [ fg (Fubini)
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Fourier inversion formula on S

o “shifting: f,g € LX(R") = [ fg = [ fg (Fubini)

@ Define the GAUSSIAN function g(x) = (27r)*”/2e*|x|2/2, x e R".
This normalization gives [ g(x) = [ |x|*g(x) = 1.
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Fourier inversion formula on S

o “shifting: f,g € LX(R") = [ fg = [ fg (Fubini)
@ Define the GAUSSIAN function g(x) = (27r)*”/2e*|x|2/2, x e R".
This normalization gives [ g(x) = [ |x|*g(x) = 1.

@ Using CAUCHY's integral formula for analytic functions we prove
g(¢) = (2m)"?g(27¢€). The Fourier inversion formula holds.
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Fourier inversion formula on S

o “shifting: f,g € LX(R") = [ fg = [ fg (Fubini)
@ Define the GAUSSIAN function g(x) = (27r)*”/2e*|x|2/2, x e R".
This normalization gives [ g(x) = [ |x|*g(x) = 1.

@ Using CAUCHY's integral formula for analytic functions we prove
g(¢) = (2m)"?g(27¢€). The Fourier inversion formula holds.

o Write g.(x) = ¢ "g(x/€), an approximate identity.
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Fourier inversion formula on S

o “shifting: f,g € LX(R") = [ fg = [ fg (Fubini)
@ Define the GAUSSIAN function g(x) = (27r)*”/2e*|x|2/2, x e R".
This normalization gives [ g(x) = [ |x|*g(x) = 1.

@ Using CAUCHY's integral formula for analytic functions we prove
g(¢) = (2m)"?g(27¢€). The Fourier inversion formula holds.

o Write g.(x) = ¢ "g(x/€), an approximate identity.
o We have g.(¢) = (2m)"2g(2ne€), lime_o 8.(€) = 1.
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Fourier inversion formula on S

o “shifting: f,g € LX(R") = [ fg = [ fg (Fubini)
@ Define the GAUSSIAN function g(x) = (27r)*”/2e*|x|2/2, x e R".
This normalization gives [ g(x) = [ |x|*g(x) =

@ Using CAUCHY's integral formula for analytic functions we prove
g(¢) = (2m)"?g(27¢€). The Fourier inversion formula holds.

o Write g.(x) = ¢ "g(x/€), an approximate identity.
o We have g.(¢) = (2m)"2g(2ne€), lime_o 8.(€) = 1.

° ¢> — [ e2Mx(€) de = lim. g [ €2™X(£)g:(€) d€ (dom. conv.)
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Fourier inversion formula on S

o “shifting: f,g € LX(R") = [ fg = [ fg (Fubini)

@ Define the GAUSSIAN function g(x) = (27r)*”/2e*|x|2/2, x e R".
This normalization gives [ g(x) = [ |x|*g(x) = 1.

Using CAUCHY's integral formula for analytic functions we prove
g(¢) = (2m)"?g(27¢€). The Fourier inversion formula holds.

Write g.(x) = € "g(x/€), an approximate identity.

We have g(¢) = (2m)"/?g(2me€), lime—o &:(€) = 1.

d(—x) = [ €25 () de = lim. g [ €2™%(£)g:(€) d€ (dom. conv.)
=limc_o f¢(/+\x)(5)§€(§) d¢ (FT of translation)
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Fourier inversion formula on S

o “shifting: f,g € LX(R") = [ fg = [ fg (Fubini)

@ Define the GAUSSIAN function g(x) = (27r)*”/2e*|x|2/2, x e R".
This normalization gives [ g(x) = [ |x|*g(x) = 1.

Using CAUCHY's integral formula for analytic functions we prove
g(¢) = (2m)"?g(27¢€). The Fourier inversion formula holds.

Write g.(x) = € "g(x/€), an approximate identity.
We have g:(¢) = (2m)"/?g(2me€), lime—o &(¢) = 1.

d(—x) = [ €25 () de = lim. g [ €2™%(£)g:(€) d€ (dom. conv.)

°
e =lim_o f¢(/+\x)(5)§€(§) d¢ (FT of translation)
o =limco [ ¢(x+y)&(y)dy (" shifting)
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Fourier inversion formula on S

o “shifting: f,g € LX(R") = [ fg = [ fg (Fubini)

@ Define the GAUSSIAN function g(x) = (27r)*”/2e*|x|2/2, x e R".
This normalization gives [ g(x) = [ |x|*g(x) = 1.

Using CAUCHY's integral formula for analytic functions we prove
g(¢) = (2m)"?g(27¢€). The Fourier inversion formula holds.

Write g.(x) = € "g(x/€), an approximate identity.
We have g:(¢) = (2m)"/?g(2me€), lime—o &(¢) = 1.

d(—x) = [ €25 () de = lim. g [ €2™%(£)g:(€) d€ (dom. conv.)

o —

o =limeo [ &(- 4+ x)(€)g(§) d¢ (FT of translation)
o =limco [ ¢(x+y)&(y)dy (" shifting)
o =limeo [ ¢(x+ y)g(—y)dy (FT inversion for g).
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Fourier inversion formula on S

o “shifting: f,g € LX(R") = [ fg = [ fg (Fubini)

@ Define the GAUSSIAN function g(x) = (27r)*”/2e*|x|2/2, x e R".
This normalization gives [ g(x) = [ |x|*g(x) = 1.

Using CAUCHY's integral formula for analytic functions we prove
g(¢) = (2m)"?g(27¢€). The Fourier inversion formula holds.

Write g.(x) = € "g(x/€), an approximate identity.
We have g:(¢) = (2m)"/?g(2me€), lime—o &(¢) = 1.

d(—x) = [ €25 () de = lim. g [ €2™%(£)g:(€) d€ (dom. conv.)

o —

o =limeo [ &(- 4+ x)(€)g(§) d¢ (FT of translation)

o =limeo [ &(x —l—y)gi(y) dy (" shifting)

o =limeo [ ¢(x+ y)g(—y)dy (FT inversion for g).
e = ¢(x) (g is an approximate identity)
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FT on L2(R")

e Preservation of inner product: [ ¢ = f@ forp,p € S

Fourier inversion implies {ﬂ\ = 1. Use " shifting.
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FT on L2(R")

e Preservation of inner product: [ ¢ = f@ forp,p € S
Fourier inversion implies E = 1. Use " shifting.

o PARSEVAL: f € St |f||, = H?HZ
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FT on L2(R")

e Preservation of inner product: [ ¢ = f@ forp,p € S
Fourier inversion implies E = 1. Use " shifting.

o PARSEVAL: f € St |f||, = H?HZ

e S dense in L?(R™): FT extends to L? and f — f is an isometry on [2.
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FT on L2(R")

e Preservation of inner product: [ ¢ = f@ forp,p € S
Fourier inversion implies E = 1. Use " shifting.
o PARSEVAL: f € St |f||, = H?HZ

e S dense in L?(R™): FT extends to L? and f — f is an isometry on [2.

@ By interpolation FT is defined on LP, 1 < p < 2, and satisfies the
HAUSDORFF-YOUNG inequality:

~ 1 1
fl <Glfl,, —+-=1
7], < coltn S+
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Tempered distributions

o Tempered distributions: S’ is the space of continuous linear
functionals on S.
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Tempered distributions

o Tempered distributions: S’ is the space of continuous linear
functionals on S.

e FT defined on §’: for u € S’ we define U(¢) = u(¢), for ¢ € S.
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Tempered distributions

o Tempered distributions: S’ is the space of continuous linear
functionals on S.

e FT defined on §’: for u € S’ we define U(¢) = u(¢), for ¢ € S.
e Fourier inversion for &' u(¢(x)) = ;\ﬁ(gb(—x)).
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Tempered distributions

o Tempered distributions: S’ is the space of continuous linear
functionals on S.

~

e FT defined on §’: for u € S’ we define U(¢) = u(¢), for ¢ € S.
e Fourier inversion for &' u(¢(x)) = ;\ﬁ(gb(—x)).

@ u — 1 is an isomorphism on &’
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Tempered distributions

o Tempered distributions: S’ is the space of continuous linear
functionals on S.

~

FT defined on &': for u € S’ we define u(¢) = u(¢), for ¢ € S.
Fourier inversion for §": u(¢(x)) = ;\ﬁ(gb(—x)).

u — 4 is an isomorphism on &’

1<p<oo:LPCS' If fe LP this mappingisin S"

o [ fo

Also S C &§'.
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Tempered distributions

o Tempered distributions: S’ is the space of continuous linear
functionals on S.

FT defined on &': for u € S’ we define u(¢) = u(¢), for ¢ € S.
Fourier inversion for §": u(¢(x)) = ;\ﬁ(gb(—x)).

u — 4 is an isomorphism on &’

1<p<oo:LPCS' If fe LP this mappingisin S"

o [ fo
Also S C &§'.

Tempered measures: [(1 + |x|) =% d|u|(x) < oo, for some k € N.
These are in S'.
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Fourier inversion for §": u(¢(x)) = ;\ﬁ(gb(—x)).

u — 4 is an isomorphism on &’

1<p<oo:LPCS' If fe LP this mappingisin S"

o [ fo
Also S C &§'.

Tempered measures: [(1 + |x|) =% d|u|(x) < oo, for some k € N.
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Tempered distributions

o Tempered distributions: S’ is the space of continuous linear
functionals on S.

FT defined on &': for u € S’ we define u(¢) = u(¢), for ¢ € S.
Fourier inversion for §": u(¢(x)) = ;\ﬁ(gb(—x)).

u — 4 is an isomorphism on &’

1<p<oo:LPCS' If fe LP this mappingisin S"

o [ fo
Also S C &§'.

Tempered measures: [(1 + |x|) =% d|u|(x) < oo, for some k € N.
These are in S'.

Differentiation defined as: (9%u)(¢) = (—1)1*u(0%¢).

@ FT of LP functions or tempered measures defined in S’
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Examples of tempered distributions and their FT
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Examples of tempered distributions and their FT

o UZ(S(), u=1
o u= D%. To find its FT

D%o() = (D*60)(9) = (—1)I16p(D*3) = (~1)II6o((—x)*6(x))

— (—1) UG ((—x)6(x)) = / X ¢(x)
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o UZ(S(), u=1
o u= D%. To find its FT

D%o() = (D*60)(9) = (—1)I16p(D*3) = (~1)II6o((—x)*6(x))
— (—1) UG ((—x)6(x)) = / X ¢(x)

° Som:xo‘.
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Examples of tempered distributions and their FT

u = 50, =1
u= D%. To find its FT

D%o() = (D*60)(9) = (—1)I16p(D*3) = (~1)II6o((—x)*6(x))

— (—1) UG ((—x)6(x)) = / X ¢(x)

So ﬁ“?o = x%,

u=x% u= D%y
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Examples of tempered distributions and their FT

u = 50, =1
u= D%. To find its FT

D%o() = (D*60)(9) = (—1)I16p(D*3) = (~1)II6o((—x)*6(x))

— (—1) UG ((—x)6(x)) = / X ¢(x)

So ﬁ“?o = x%,
u=x% u= D%

J ~ J .
u= Zj:l aj(spj, u(§) = Zj:l ajeZNijg.
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Examples of tempered distributions and their FT

u = 50, =1
u= D%. To find its FT

D%o() = (D*60)(9) = (—1)I16p(D*3) = (~1)II6o((—x)*6(x))
— (—1) UG ((—x)6(x)) = / X ¢(x)

So m = X
u=x% u= D%y
J —~ J .
u= Zj:l aj(spj, u(§) = Zj:l ajeZNijg.
Po1ssON Summation Formula (PSF): u =3, 7.0k, U= u
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Proof of the POI1SSON Summation Formula

o ¢ €S. Define g(x) =z O(x + k).
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Proof of the POI1SSON Summation Formula

o ¢ € S. Define g(x) = > czn O(x + k).
@ g has Z" as a period lattice: g(x + k) = g(x), x e R" k € Z".
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o ¢ € S. Define g(x) = > czn O(x + k).
@ g has Z" as a period lattice: g(x + k) = g(x), x e R" k € Z".

@ The periodization g may be viewed as g : T" — C.
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Proof of the POI1SSON Summation Formula

o ¢ €S. Define g(x) =z O(x + k).

@ g has Z" as a period lattice: g(x + k) = g(x), x e R" k € Z".
@ The periodization g may be viewed as g : T" — C.

o FT of g lives on T7 = Z". The Fourier coefficients are

(k) = /T T 6 m)e 2 g = ().

mezn
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Proof of the POI1SSON Summation Formula

o ¢ € S. Define g(x) = > czn O(x + k).
@ g has Z" as a period lattice: g(x + k) = g(x), x e R" k € Z".
@ The periodization g may be viewed as g : T" — C.

o FT of g lives on T7 = Z". The Fourier coefficients are

(k) = /T T 6 m)e 2 g = ().

mezn

o From decay of ¢ follows that the FS of g(x) converges absolutely and
uniformly and

g(x) = Y o(k)e™ .

kezn
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Proof of the POI1SSON Summation Formula

o ¢ € S. Define g(x) = > czn O(x + k).
@ g has Z" as a period lattice: g(x + k) = g(x), x e R" k € Z".
@ The periodization g may be viewed as g : T" — C.

o FT of g lives on T7 = Z". The Fourier coefficients are

(k) = /T T 6 m)e 2 g = ().

mezn

o From decay of ¢ follows that the FS of g(x) converges absolutely and
uniformly and

g(x) = Y o(k)e™ .

kezn

o x =0 gives the PSF: 3", ;0 6(k) = Y sezn 0(k).
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FT behavior under linear transformation

@ Suppose T : R" — R" is a non-singular linear operator. u € &',
v=uoT.
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FT behavior under linear transformation

@ Suppose T : R" — R" is a non-singular linear operator. u € &',
v=uoT.

@ Change of variables formula for integration implies

1

T,
|det T e

v
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FT behavior under linear transformation

@ Suppose T : R" — R" is a non-singular linear operator. u € &',
v=uoT.

@ Change of variables formula for integration implies

1

T,
|det T e

v

o Write R" = H® HL, H a linear subspace.
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FT behavior under linear transformation

@ Suppose T : R" — R" is a non-singular linear operator. u € &',
v=uoT.

@ Change of variables formula for integration implies

1

T,
|det T e

v

o Write R" = H® HL, H a linear subspace.

@ Projection onto subspace defined by

(mf)(h) = /HT f(h+x)dx, (heH).
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FT behavior under linear transformation

@ Suppose T : R" — R" is a non-singular linear operator. u € &',
v=uoT.

@ Change of variables formula for integration implies

1

T,
|det T e

v

o Write R" = H® HL, H a linear subspace.

@ Projection onto subspace defined by

(mf)(h) = /HT f(h+x)dx, (heH).

o For & € H: wf(€) = F(€) (Fubini).
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Analyticity of the FT

o Compact support: f : R — C, f € LY(R), f(x) =0 for |x| > R.
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Analyticity of the FT

o Compact support: f : R — C, f € LY(R), f(x) =0 for |x| > R.
o FT defined by

&) = /R f(x)e 2 dx.
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Analyticity of the FT

o Compact support: f : R — C, f € LY(R), f(x) =0 for |x| > R.
o FT defined by

(&) = / F(x)e 2™ dx.
R
@ Allow ¢ € C, € = s+ it in the formula.

~

f(s+it) = / f(x)e¥ e 2misx g
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Analyticity of the FT

o Compact support: f : R — C, f € LY(R), f(x) =0 for |x| > R.
o FT defined by

(&) = / F(x)e 2™ dx.
R
@ Allow ¢ € C, € = s+ it in the formula.

~

f(s+it) = / f(x)e¥ e 2misx g

e Compact support implies f(x)e?™™ ¢ L}(R), so integral is defined.
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Analyticity of the FT

o Compact support: f : R — C, f € LY(R), f(x) =0 for |x| > R.
o FT defined by

(&) = / F(x)e 2™ dx.
R
@ Allow ¢ € C, € = s+ it in the formula.

~

f(s+it) = / f(x)e¥ e 2misx g

e Compact support implies f(x)e?™™ ¢ LI(R)/,\SO integral is defined.
o Since e 2™*¢ is analytic for all £ € C, so is f(£).

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 32 /36



Analyticity of the FT

o Compact support: f : R — C, f € LY(R), f(x) =0 for |x| > R.
o FT defined by

(&) = / F(x)e 2™ dx.
R
@ Allow ¢ € C, € = s+ it in the formula.

~

f(s+it) = / f(x)e¥ e 2misx g

e Compact support implies f(x)e?™™ ¢ L}(R), so integral is defined.
@ Since e~2™*¢ is analytic for all £ € C, so is ?(f)
o PALEY-WIENER: f € L2(R). The following are equivalent:
(a) f is the restriction on R of a function F holomorphic in the strip
{z 1 |Sz| < a} which satisfies

/|F(x+iy)|2dx <C (yl<a)

(b) eF (&) € L2(R).
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Application: the STEINHAUS tiling problem

@ Question of STEINHAUS: Is there E C R? such that no matter how
translated and rotated it always contains exactly one point with
integer coordinates?
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Application: the STEINHAUS tiling problem

@ Question of STEINHAUS: Is there E C R? such that no matter how
translated and rotated it always contains exactly one point with
integer coordinates?

@ Two versions: E is required to be measurable or not
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Application: the STEINHAUS tiling problem

@ Question of STEINHAUS: Is there E C R? such that no matter how

translated and rotated it always contains exactly one point with
integer coordinates?

@ Two versions: E is required to be measurable or not

@ Non-measurable version was answered in the affirmative by JACKSON
and MAULDIN a few years ago.
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Application: the STEINHAUS tiling problem

@ Question of STEINHAUS: Is there E C R? such that no matter how

translated and rotated it always contains exactly one point with
integer coordinates?

@ Two versions: E is required to be measurable or not

@ Non-measurable version was answered in the affirmative by JACKSON
and MAULDIN a few years ago.

@ Measurable version remains open.
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Application: the STEINHAUS tiling problem

@ Question of STEINHAUS: Is there E C R? such that no matter how
translated and rotated it always contains exactly one point with
integer coordinates?

@ Two versions: E is required to be measurable or not

@ Non-measurable version was answered in the affirmative by JACKSON
and MAULDIN a few years ago.

@ Measurable version remains open.
e Equivalent form (Ry is rotation by 6):

Y lge(t+k) =1, (0<f<2m teR?). (5)
kez?
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Application: the STEINHAUS tiling problem

@ Question of STEINHAUS: Is there E C R? such that no matter how
translated and rotated it always contains exactly one point with
integer coordinates?

@ Two versions: E is required to be measurable or not

@ Non-measurable version was answered in the affirmative by JACKSON
and MAULDIN a few years ago.

@ Measurable version remains open.
e Equivalent form (Ry is rotation by 6):

Y lge(t+k) =1, (0<f<2m teR?). (5)
kez?

@ We prove: there is no bounded measurable STEINHAUS set.
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Application: the STEINHAUS tiling problem

@ Question of STEINHAUS: Is there E C R? such that no matter how
translated and rotated it always contains exactly one point with
integer coordinates?

@ Two versions: E is required to be measurable or not

@ Non-measurable version was answered in the affirmative by JACKSON
and MAULDIN a few years ago.

@ Measurable version remains open.
e Equivalent form (Ry is rotation by 6):

Y lge(t+k) =1, (0<f<2m teR?). (5)
kez?

We prove: there is no bounded measurable STEINHAUS set.
o Integrating (5) for t € [0, 1]? we obtain |E| = 1.
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Application: the STEINHAUS tiling problem

@ Question of STEINHAUS: Is there E C R? such that no matter how
translated and rotated it always contains exactly one point with
integer coordinates?

@ Two versions: E is required to be measurable or not

@ Non-measurable version was answered in the affirmative by JACKSON
and MAULDIN a few years ago.

@ Measurable version remains open.

e Equivalent form (Ry is rotation by 6):

Y lge(t+k) =1, (0<f<2m teR?). (5)
kez?

We prove: there is no bounded measurable STEINHAUS set.

o Integrating (5) for t € [0, 1]? we obtain |E| = 1.

o LHS of (5) is the Z2-periodization of 1g,z. Hence f;»e\g(k) =0,
k € 72\ {0}.
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Application: the STEINHAUS tiling problem

@ Question of STEINHAUS: Is there E C R? such that no matter how
translated and rotated it always contains exactly one point with
integer coordinates?

@ Two versions: E is required to be measurable or not

@ Non-measurable version was answered in the affirmative by JACKSON
and MAULDIN a few years ago.

@ Measurable version remains open.

e Equivalent form (Ry is rotation by 6):

Y lge(t+k) =1, (0<f<2m teR?). (5)
kez?

We prove: there is no bounded measurable STEINHAUS set.

o Integrating (5) for t € [0, 1]? we obtain |E| = 1.

o LHS of (5) is the Z2-periodization of 1g,z. Hence f?g\g(k) =0,
k € 72\ {0}.

° i;({) =0, whenever £ on a circle through a lattice point
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The circles on which 1 must vanish

o 0O 0O O O O o o©o
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Application: the STEINHAUS tiling problem: conclusion

@ Consider the projection f of 1z on R.
E bounded = f has compact support, say in [—B, B].
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Application: the STEINHAUS tiling problem: conclusion

@ Consider the projection f of 1z on R.
E bounded = f has compact support, say in [—B, B].

@ For £ € R we have ?(5) = i;(ﬁ,O), hence

7 (\/m2 n n2) —0, (m,n)eZ?\{0.
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Application: the STEINHAUS tiling problem: conclusion

@ Consider the projection f of 1z on R.
E bounded = f has compact support, say in [—B, B].

@ For £ € R we have ?(5) = i;(ﬁ,O), hence
f (\/m2 n n2) =0, (m,n)ez?\ {0l

o LANDAU: The number of integers up to x which are sums of two
squares is ~ Cx/ log'/? x.
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Application: the STEINHAUS tiling problem: conclusion

Consider the projection f of 1z on R.
E bounded = f has compact support, say in [—B, B].

For £ € R we have ?(5) = i;(ﬁ, 0), hence
f (\/m2 n n2) =0, (m,n)ez?\ {0l

LANDAU: The number of integers up to x which are sums of two
squares is ~ Cx/ log'/? x.

Hence f has almost R2 zeros from 0to R.
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Application: the STEINHAUS tiling problem: conclusion

@ Consider the projection f of 1z on R.
E bounded = f has compact support, say in [—B, B].

@ For £ € R we have ?(5) = i;(ﬁ,O), hence

7 (\/m2 n n2) —0, (m,n)eZ?\{0.

o LANDAU: The number of integers up to x which are sums of two
squares is ~ Cx/ log'/? x.

e Hence f has almost R? zeros from 0 to R.

o supp f C [~ B, B] implies (?(z)( < ||f]l,e>™B, z € C
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Application: the STEINHAUS tiling problem: conclusion

@ Consider the projection f of 1z on R.
E bounded = f has compact support, say in [—B, B].

@ For £ € R we have ?(5) = i;(ﬁ,O), hence
f (\/m2 n n2) =0, (m,n)ez?\ {0l

o LANDAU: The number of integers up to x which are sums of two
squares is ~ Cx/ log'/? x.

e Hence f has almost R2 zeros from 0 to R.
o supp f C [~B, B] implies |7(2)| < |If];e*"8!, z € C

@ But such a function can only have O(R) zeros from 0 to R.
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Zeros of entire functions of exponential type

e JENSEN's formula: F analytic in the disk {|z| < R}, zx are the zeros
of F in that disk. Then

Z log — /1 log ‘F(Rezw{e)‘ dé.
0

|Zk|
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Zeros of entire functions of exponential type

e JENSEN's formula: F analytic in the disk {|z| < R}, zx are the zeros
of F in that disk. Then

Z log — /1 log ‘F(Rezw{e)‘ dé.
0

|Zk|

o |t follows

1
#{k |zk|§R/e}§/O Iog’F(ReZWie)‘dH
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Zeros of entire functions of exponential type

e JENSEN's formula: F analytic in the disk {|z| < R}, zx are the zeros
of F in that disk. Then

Z log — /1 log ‘F(Rezw{e)‘ dé.
0

|Zk|

o |t follows
1 -
#{k: |z| < R/e} S/ Iog’F(Re%r:e)‘ do
0

o Suppose |F(z)| < AeBl?l. Then RHS above is < BR + log A.
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Zeros of entire functions of exponential type

e JENSEN's formula: F analytic in the disk {|z| < R}, zx are the zeros
of F in that disk. Then

Z log — /1 log ‘F(Rezw{e)‘ dé.
0

|Zk|
o |t follows
1 -
#{k: |z| < R/e} S/ Iog’F(Re%r:e)‘ do
0

o Suppose |F(z)| < AeBl?l. Then RHS above is < BR + log A.

@ Such a function F can therefore have only O(R) zeros in the disk
{lz] < R}.
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