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Abstract

A simple algorithm is given for the computation of the Euclidean distance from the set of black points in a
N x N black and white image, for all points in the image. The running time is O(N?log N) and O(N) extra
space is required. The algorithm is suitable for implementation on a parallel machine.
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1. Introduction

Consider a black and white N x N binary image: i.e., a two dimensional array where a;; = 0 or 1, for
i, =0,...,N — 1. The index i stands for the row, the index j for the column and (0,0) is the upper left
point in the image. We solve the problem of finding for each point (i, j) its Euclidean distance from the set
of all black points B = {(4, j) : aj; = 1}. In other words, we compute the array

dij = Join, (=2 + (G —p)), forallij.

An algorithm is given which requires O(N?log N) time and O(N) space (plus the space needed to store the
result). The algorithm is suitable for implementation on a parallel machine.

The Euclidean distance map d;; has important uses in computer vision, pattern recognition and robotics
[2]. For instance, if the black points represent obstacles then d;; tells us how far the point (¢, j) is from these
obstacles. This information is useful when one tries to move a robot in the free space (white points of the
image) keeping it away from the obstacles.

It is much easier to compute the distance map for the L! distance. This can be done in optimal time
O(N?), if one uses the fact that the L distance between two points in the N x N grid is the length of the
shortest path that joins them. However, there is no such interpretation for the Euclidean distance. One way
around this problem is to approximate the Euclidean distance with distances that can be computed in the
same way as the L distance (Danielsson [2]). The only non-trivial algorithm for the computation of the
exact Euclidean distance map that we are aware of is that of Yamada [3]. Yamada’s algorithm performs N
iterations of local transformations of the entire image. It is not clear whether Yamada’s algorithm can be
converted to an efficient (i.e. running in time close to O(N?)) algorithm on a sequential computer.

2. The Algorithm
First note that it is sufficient to give an algorithm for the computation of

2 . . 2 . 2 ..
T o= min t—x) +(J — , for all 4, ;.
7 (ey)eBy>j (( ) (G- ) J

Here r?j is the square of the distance of the point (i, j) from the part of B that is to the right of ().
Computing the distance from the right and from the left and taking the minimum of the two gives d?j. So
only the computation of r?j is described here.
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Let B; = BN{(z,y) : y > j} and let N;; denote any nearest point to (7, j) in B;. The following lemma
is exploited by our algorithm.

Lemma 1: Let P = (a,j), Q = (b,j), b < a, be two points in the same column with @ above P. Let
Np = (2z,y), and Ng = (2, w). Then z < z, that is Ng is above Np. This holds for any choice of the nearest
black points Np and Ng.
Proof: We have

(x—a)® +(y—j)* <(z—a)’ + (w—j)*
and

(= =)+ (w=3) < (@ =)’ + (y = 3"

Adding the above inequalities gives z < z.

The array N;; is computed column by column, moving from left to right. The values of 7’2-2]- can be
computed from N;;. While computing N;; for fixed j and for all ¢, we use the vector

VY = min{k : k>j, (i,k) € B}.

If the above set is empty, we set Vi(j) = oco. FEach vector Vi(j+1) is computed from Vi(j) as follows. For
each 7 such that a;; = 1, scan the i-th row to the right, starting from column j 4 1, until a black point is

encountered, which will be Vi(j+1). If no black point is encountered up to the column N —1, set VZ-(j'H) = 00
If a;; = 0 then set VZ-(]-H') = VZ-(J).

Only the current V) vector is stored. The computation for all i and j of Vi(j) takes O(N?) time, since
each row is traversed to the right only once. So, while computing N;; for any fixed column j, we may assume
the vector VU) is given.

It remains to give an O(N log N) time algorithm for computing Nj; for any fixed j. We have to find
for each i a nearest point of (7, j) among the points in the vector V), (Notice that we identify Vkm with
the point (k, Vk(])).) Doing this by exhaustive search results in an O(N?) algorithm. Instead, the following
recursive algorithm is used.

Denote by A(z1, a, 21, 22) the algorithm below. This algorithm finds nearest black points for all points
(7,7), z1 < i< zq (j is fixed), considering only the points Vk(]), z1 < k < z9. The problem is solved by the
call A(O,N —1,0,N —1).

Algorithm A(zq, 29,21, 22)

Set zg = I_%(]Jl +z2)].

Find Ng,; = (20, wo) by searching one by one the points Vk(j), 21 <k < zg.
If 21 < 29 — 1 then recursively call A(z1, 20— 1, 21, 20).

If 20 + 1 < 22 then recursively call A(zg + 1,22, 20, 22).

R N

When a nearest black point of the midpoint (zg, j) is found in step 2 of the algorithm, we know that
all nearest points of the upper half of the part of the current column are above N, ; (similarly for the lower
half). This justifies the recursive calls 3 and 4 and the correctness of the algorithm.

Remark on other distances

Our algorithm can be applied to the computation of the distance map for distances other than the Euclidean
distance. Such a distance must satisfy Lemma 1 and must also have the following property: if b <y < z and
a,z are arbitrary then the distance of (z,y) from (a,b) is less than or equal to the distance of (z,z) from
(a,b). The latter property was used in the algorithm above when we restricted the search for nearest black
points to the points in the vector V().

Neither of the above two properties need hold for an arbitrary distance, not even when the distance
comes from a vector space norm. Indeed, the norm of the plane for which the unit sphere is the parallelogram
defined by the points (0,—0.1),(1,1),(0,0.1) and (—1,—1), does not have any of the above properties. A
distance which has both properties is the L' distance. Thus our algorithm is applicable to the L' distance.
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3. Time
Let T(m,n) be the maximum running time of algorithm A when z3 — 27 < m and 22 — z; < n. Obviously,
T(1,n) = n and in general we have the recurrence inequality

m
o

T(m,n) < max (n + 7 5

m
m) + T(5n2))
where n1 + n2 = n+ 1, and the maximum is taken over all such n1, ny. The first two steps of the algorithm
account for the n term and the two recursive calls account for the two 7" terms in the right hand side.
Assume for simplicity that m = 2% is a power of 2. Iterating the above inequality L times we have

T(m,n) < n+T(5,n{") + T(F,ns"),  where nf" + 0" = n 41

4 4
<n+4 n(ll) + ngl) + ZT(%,RE”), where also an(?) =n4+14+2

i=1 i=1

L-1 2F o 2k
§n+zzngk‘)+ T(QmL,ngL)), where for all k, Enl(.k):n—I—l-l-Q—i—...—l—?k_l <n+m
k=1i=1 i=1 i=1
2L
<n+(L-1)(m+n)+ > T(1,n").
i=1

Hence there is a constant C' > 0 such that
T(m,n) < C(n+m+ (m+ n)logm).
This gives the desired T(N — 1, N — 1) = O(N log N).

4. Parallelizing the Algorithm
Since the above algorithm works on one column at a time, it can be easily parallelized. Consider for example
an Exclusive Read, Exclusive Write Parallel Random Access Machine (EREW PRAM) with p processors [1].
This consists of random access memory to which all p processors have simultaneous access provided they
read or write to different locations. Our algorithm can be parallelized on the EREW PRAM with optimal
speedup as follows.

We use one more N x N array to store the values of VZ»(” for all 7 and j. To compute all V;m we assign

N/p conscecutive rows to each processor. Each processor is responsible for computing the values of VZ-(]) for
all 2 and j that belong to the region that has been assigned to the processor. This does not give rise to any
read/write conflicts since all processors work on disjoint regions. This computation takes O(N?/p) time,
since each row of the V array takes O(N) time, and each processor computes N/p rows.

Having computed and stored the values of VZ-(J), we now assign N/p consecutive columns to each pro-
cessor. Each processor can perform the algorithm A(0, N — 1,0, N — 1) on all the columns that have been
assigned to it, since, for each column, all the information that the processor needs is stored in the corre-
sponding column of the V array. Again no read/write conflicts arise, the running time is O(N?log N/p) and
the speedup is p.

As mentioned in section 2 our algorithm applies without any changes to the case of the L' distance.
Of course, for the L! distance there is a well known and optimal O(N?) algorithm. This algorithm starts
propagating a wave from the black points until it has reached the whole image. This algorithm is superior
to ours in the case of the sequential implementation, but a parallel implementation of it is far from obvious,
since the access to the image is not uniform. In this case our algorithm could be preferable.
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