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Abstract. Let Ω ⊂ Rd be a set of finite measure. The periodic tiling conjec-
ture suggests that if Ω tiles Rd by translations then it admits at least one
periodic tiling. Fuglede’s conjecture suggests that Ω admits an orthogonal
basis of exponential functions if and only if it tiles Rd by translations. Both
conjectures are known to be false in sufficiently high dimensions, with all the
so-far-known counterexamples being highly disconnected. On the other hand,
both conjectures are known to be true for convex sets. In this work we study
these conjectures for connected sets. We show that the periodic tiling conjec-
ture, as well as both directions of Fuglede’s conjecture are false for connected
sets in sufficiently high dimensions.
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1. Introduction

1.1. Trading dimension for freedom in tilings by translation. Tiling by
translation is a fascinating subject with connections to several parts of analy-
sis and number theory, as well as, of course, geometry. Restricting the motions
of the tile to translations imposes a stronger structure on tilings compared
with tilings where the tile (or tiles) are allowed a greater group of motions.
Tilings by translation often have, or are conjectured to have, properties that
more general tilings do not have. This paper focuses on two of them: period-
icity and spectrality. In the first we seek to understand if a translational tile
must also be able to tile in a periodic manner, a property known to fail for
tilings with a larger group of motions. In the second the Fuglede conjecture
identifies domains that tile with domains that admit an orthogonal basis of
exponentials for their L2 space.

It has turned out that both these properties cease to hold when the dimen-
sion is sufficiently large. It appears that the extra freedom afforded by high
dimension compensates for the rigidity imposed by restricting to translations.
It is exactly this phenomenon that we exploit in this paper: increasing the
dimension allows us to obtain more well behaved counterexamples to the Pe-
riodic Tiling Conjecture and to the Fuglede Conjecture, namely it allows us to
obtain connected sets as counterexamples.

1.2. Tilings and periodicity. The study of the structure of tilings goes back
to Hilbert’s 18th problem. This problem was later generalized to the well
known “einstein1 problem”, which asks about the existence of a single shape
which tiles the space but does so only in a non-periodic way. Such a tile is called
“aperiodic” or an “einstein”. Socolar–Taylor [ST12] constructed a planar ape-
riodic tile which tiles the plane by translations, rotations and also reflections,
but this tile is highly disconnected. The Socolar–Taylor construction was later
extended to the Schmitt–Conway–Danzer tile: A convex three-dimensional do-
main which tiles R3 aperiodically by translations, rotations and reflections
[SCD93]. The einstein problem for planar connected tiles remained open, until
very recently, when “The Hat” tile was discovered by Smith–Myers–Kaplan–
Goodman-Strauss [SMKGS23a]. Moreover, in a subsequent paper, the same
authors constructed a connected planar “einstein” which tiles the plane aperi-
odically by translations and rotations only (no reflections) [SMKGS23b]. It is
known, however, that there is no translational einstein which is a topological
disk [BN91,Ken92]. It was recently shown [GT22] that aperiodic translational
tiles exist in high dimensions. The first part of this paper (Section 2) is devoted
to the question whether there are any aperiodic connected translational tiles.

Let Ω ⊂ Rd be a measurable set of finite, positive measure. We call Ω a
translational tile of Rd if there exists a (countable) set A ⊂ Rd such that the
family of translates of Ω along the elements of A:

Ω+ a, a ∈ A,

covers almost every point in Rd exactly once. The set A is then called a tiling
of Rd by Ω, and we write:

Ω ⊕ A = Rd.

1Here, the word “einstein” refers to “one stone” in German.



TILING, SPECTRALITY AND APERIODICITY OF CONNECTED SETS 3

Similarly, a finite subset F ⊂ Zd is a translational tile of Zd if there exists
A ⊂ Zd such that the sets F+a, a ∈ A, form a partition ofZd, namely: F⊕A = Zd.
In this case, A is called a tiling of Zd by F.

For G = Rd or G = Zd, a tiling A in G is said to be periodic if there exists a
latticeΛ, a discrete subgroup of G containing d linearly independent elements,
such that A is invariant under translations by any point in this lattice; namely

A + λ = A, λ ∈ Λ

for some co-compact subgroupΛ of G. A translational tile of G is called aperiodic
if none of the tilings that it admits are periodic.

In the 60’s, H. Wang [W75] conjectured that any tiling, by an arbitrary fi-
nite number of tiles, in Z2 admits a periodic tiling. Wang also showed that
if this conjecture were true, then the question whether a given collection of
finite subsets of Z2 tiles would be algorithmically decidable: there would be
an algorithm that provides an answer to this question in finite time. A few
years later, Berger proved [B64,B66] a negative answer to both questions. He
constructed an aperiodic tiling with 20,426 tiles: this tile-set admits tilings
but none of these tilings are periodic. Then, using this construction, he also
proved that tilings by multiple tiles in Z2 are undecidable. Since then, there
has been an extensive effort to reduce the possible size of aperiodic and unde-
cidable tile-sets, see [GT21, Table 2]. Recently, in [GT21], it was proved that
tilings with two tiles are undecidable in high dimensions.

As for translational tiling by a single tile, the celebrated periodic tiling con-
jecture [GS87,LW96] asserts that there are no aperiodic translational tiles:

Conjecture 1.1 (The periodic tiling conjecture). Let Ω ⊂ Rd be a set of finite,
positive measure. If Ω tiles Rd by translations then it must admit at least one
periodic tiling.

The periodic tiling conjecture is known to hold in R [LW96], in R2 for topo-
logical disks [BN91, Ken92] and also for convex domains in all dimensions
[M80,V54]. However, very recently the periodic tiling conjecture was disproved
in high dimensions [GT22].

Since the counterexample constructed in [GT22] is disconnected, a natural
followup question is whether the periodic tiling conjecture is true for connected
sets2 in all dimensions, see [GT22, Question 10.3].

Our first result gives a negative answer to this question:

Theorem 1.2. For sufficiently large d, there exists a setΩ inRd of finite measure
which is the closure of its interior, such that:

(i) Ω is connected.
(ii) Ω tiles Rd by translations.

(iii) If Ω ⊕ A = Rd then A is non-periodic.

In fact, we show that any d-dimensional disconnected counterexample to the
periodic tiling conjecture Ω gives rise to a (d+ 2)-dimensional counterexample
Ω′, which is connected.

2To avoid trivial constructions, e.g., adding zero-measure line segments between connected
components to make the set connected while trivially preserving aperiodicity, we require that
the connected set is also the closure of its interior.
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The proof is done by first showing that certain type of operations on a given
finite set F ⊂ Zd preserve aperiodicity, see Theorem 2.1. This latter theorem
is general, and might be of independent interest. Then, we use this theorem
to construct (d + 2)-dimensional “folded briges” between the connected compo-
nents of a given aperiodic tile F ⊂ Zd, while preserving its aperiodicity. Finally,
we inflate the obtained (d + 2)-dimensional aperiodic tile, to get an aperiodic
connected tile in Rd+2.

1.3. Tiling and spectrality. A measurable setΩ ⊂ Rd of positive, finite mea-
sure is called spectral if there is a frequency set Λ ⊂ Rd such that the system

E(Λ) B {e2πiλ·x
}λ∈Λ

constitutes an orthogonal basis for L2(Ω). In this case, the set Λ is called a
spectrum for Ω.

The study of spectral sets goes back to Fuglede [F74], who in 1974 conjec-
tured that spectral sets are exactly the ones which tile by translations:
Conjecture 1.3 (Fuglede’s spectral sets conjecture). A set Ω ⊂ Rd of finite,
positive measure is spectral if and only if it tiles space by translations.

Fuglede’s conjecture motivated an extensive study of the nature of the con-
nection between the two properties: The analytic property of spectrality and
the geometric property of tiling by translations. Throughout the years many
positive results towards the conjecture have been obtained, see [KM10, Section
4] and the references mentioned there. In particular, the conjecture is known
to hold for convex domains in all dimensions [IKT03,GL17,LM19]. Neverthe-
less, in 2004, Tao discovered that there exist counterexamples to Fuglede’s
conjecture. In [T04], he constructed examples of sets Ω ⊂ Rd, for any d ≥ 5,
which are spectral, but cannot tile by translations. Subsequently, by an enrich-
ment of Tao’s approach, examples of translational tiles which are not spectral
were also constructed, and eventually the dimension in these examples was
reduced down to d ≥ 3 [KM1, KM2] (see [KM10, Section 4] for more refer-
ences). All these examples arise from constructions of counterexamples to the
finite Abelian group formulation of Fuglede’s conjecture. Thus, when inflated
to Euclidean space Rd, d ≥ 3, each of the known counterexamples is a finite
union of unit cubes centered at points of the integer latticeZd. However, since
in all the previously known examples the arrangement of the cubes is very
sparse and disconnected, Fuglede’s conjecture for connected sets3 remained
open. In this paper we show that there are connected counterexamples to both
directions of the conjecture.

In Section 3, from a given disconnected set in Rd which is spectral and does
not tile, we construct a connected set in Rd+2 which is spectral and does not
tile:
Theorem 1.4. For d ≥ 5, there exists a set Ω in Rd of finite measure which is
the closure of its interior, such that:

(i) Ω is connected.
(ii) Ω is spectral.

(iii) Ω does not tile Rd by translations.
3As before, to avoid trivial constructions, e.g., adding zero-measure paths between con-

nected components to make the set connected while trivially preserving its tiling and spectral
properties, we require that the connected set is equal to the closure of its interior.
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Similarly to the construction in Section 2, this is done by constructing “folded
bridges” in Rd+2 between the connected components of a given spectral set in
Rd which is not a tile. We prove in Theorem 3.1 that this type of construction
preserves spectrality as well as the tiling properties of the original set.

In Section 4, we construct, from a given disconnected set Ω ⊂ Rd which tiles
and is not spectral, a connected set in Rd̃, d̃ = d̃(Ω) > d, which tiles and is not
spectral:

Theorem 1.5. For sufficiently large d, there exists a setΩ inRd of finite measure
which is the closure of its interior, such that:

(i) Ω is connected.
(ii) Ω tiles Rd by translations.

(iii) Ω is not spectral.

The proof is done by iteratively constructing high dimensional “spiral bridges”
between the connected components of Ω, a given finite union of unit cubes
which tiles and is not spectral. In Theorem 4.1 we prove that this type of con-
struction preserves the non-specrality as well as the tiling properties of the
original set.

Theorems 3.1 and 4.1 give a range of operations on a set that preserve its
spectral and tiling properties. These theorems may, therefore, be of indepen-
dent interest.

1.4. Notation and preliminaries. Throughout this paper:

• We denote the Euclidean norm by

∥ · ∥ : Rd
→ [0,∞).

• We denote the Lebesgue measure of a set Ω ⊂ Rd by |Ω|, and for a set
F ⊂ Zd, |F| denotes the cardinality of F, or, equivalently, the counting
measure of F.
• For a number r ∈ R, ⌊r⌋ ∈ Z denotes the largest integer which is smaller

or equal to r, and ⌈r⌉ denotes the smallest integer which is greater or
equal to r.
• For sets A,B in a group G, we use the notation A + B for Minkowski

addition:
{a + b : a ∈ A, b ∈ B}

of A and B. For A ⊂ G and B ⊂ G′ the set A×B ⊂ G×G′ is the Cartesian
product:

{(a, b) : a ∈ A, b ∈ B}

of A and B.
• For a function f : Rd

→ C we denote

{ f = 0} B {ξ ∈ Rd : f (ξ) = 0}.

1.4.1. Let Λ ⊂ Rd be a countable set and let Ω ⊂ Rd be measurable with pos-
itive, finite measure. Observe that the system E(Λ) = {e2πiλ·x

}λ∈Λ is orthogonal
in L2(Ω) if and only if

(1) (Λ −Λ) \ {0} ⊂ {1̂Ω = 0}.
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The upper density of Λ is defined as the quantity

lim sup
R→∞

sup
x∈Rd

|Λ ∩ (x + [−R/2,R/2]d)|
Rd

and the lower density of Λ is defined as

lim inf
R→∞

sup
x∈Rd

|Λ ∩ (x + [−R/2,R/2]d)|
Rd

.

If the upper density ofΛ is equal to its lower density, we denote both quantities
by densΛ and say that Λ has density densΛ.

The following proposition is well known in the study of spectral sets. It will
be used in the proofs of Theorems 3.1 and 4.1.
Proposition 1.1. Let Ω ⊂ Rd be a measurable set of positive, finite measure.
The following are equivalent:

(i) Ω is spectral.
(ii) There exists Λ ⊂ Rd of lower density at least |Ω| such that (1) is satisfied.

Moreover, if Λ ⊂ Rd is a spectrum for Ω then Λ satisfies (1) and densΛ = |Ω|.

The proof of Proposition 1.1 follows by combining [K04, Section 3.1] or [GL18,
Lemma 3.1] with [K16, Theorem 1].

1.5. Acknowledgment. R.G. was supported by the National Science Founda-
tion grants DMS-2242871, DMS-1926686 and by the Association of Members
of the Institute for Advanced Study. M.K. was supported by the Hellenic Foun-
dation for Research and Innovation, Project HFRI-FM17-1733 and by Univer-
sity of Crete Grant 4725. We thank Terence Tao for helpful suggestions to
improve the exposition of the paper. We are grateful to Sha Wu of Hunan Uni-
versity for pointing out an error in the original “folded bridge” construction
which led us to a much simplified “folded bridge”.

2. Aperiodic connected tiles

Theorem 2.1 (Aperiodicity preserving operation). Let F be a finite subset of
Zd. Define the finite set

X =
{
(v j, s j) : j = 0, 1, . . . ,n − 1

}
⊆ Rd+k

where v0, . . . , vn−1 ∈ Zd are arbitrary and s0, . . . , sn−1 are n distinct points in Zk

such that
S = {s j : j = 0, 1, . . . ,n − 1}

tiles Zk by translations. Let F′ =
(
F × {0}k

)
⊕ X. Then F′ is an aperiodic tile in

Zd+k if F is an aperiodic tile of Zd.
Remark 2.1. If H,K are subgroups of G then [H : H∩K] ≤ [G : K]. This implies
that if Λ ⊆ Zm

×Zn is a lattice then Λ ∩Zm
× {0}n is a lattice in Zm

× {0}n.

Proof of Theorem 2.1. Suppose that F ⊂ Zd is an aperiodic tile. Suppose, to-
wards a contradiction, that F′ is not aperiodic. Clearly, F′ tiles Zd+k. Indeed,
by assumption, there is a tiling A ⊂ Zd of Zd by F, and a tiling T ⊂ Zk of Zk by
S; by construction of F′ we then have that

A′ = A × T
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is a tiling of Zd+k by F′. Therefore, our assumption that F′ is not aperiodic
implies that there exists a periodic tiling A′ of Zd+k by F′ with period lattice
G′ ⊆ Zd+k. Define V = Zd

× {0}k and

G = G′ ∩ V.

It follows from Remark 2.1 that G is a lattice in V. Define also the subset of V

(2) A B (A′ + X) ∩ V.

Since for every a′ ∈ A′, x ∈ X with a′+ x ∈ V and every g ∈ G we have a′+ x+ g =
(a′ + g) + x = a′′ + x for some a′′ ∈ A′, we conclude that A + G = A, so that A
is periodic in V. Thus, to arrive at a contradiction, it is enough to prove that
F × {0}k ⊕ A = V is a tiling. Observe that for every a′ ∈ A′

(F′ + a′) ∩ V = (F × {0}k + X + a′) ∩ V = F × {0}k +
(
(X + a′) ∩ V

)
,

since F × {0}k ⊆ V. Thus, since

(F′ + a′) ∩ V, a′ ∈ A′

form a tiling of V, so do the translates of F × {0}k by all the points x + a′ ∈ V,
with x ∈ X, a′ ∈ A′, which is exactly the set of translates A defined in (2). □

Definition 2.1. Let B ⊂ Zd. A connected component of B is a subset C of B
such that C + [0, 1]d is a connected component of B + [0, 1]d in Rd.

If B has a single connected component, we say that B is connected.

Remark 2.2. In our definition two points a, b ∈ Zd are connected to each other
if and only if |ai − bi| ≤ 1, for all i = 1, 2, . . . , d. In other words each point in Zd

has 3d
− 1 neighbors.

We could strengthen the notion of connectivity for subsets of Zd to demand
a, so-called, 2d-connected path from any point of the set to any other (such a
path is allowed to go from any point x ∈ Zd to any of its 2d neighbors along the
d coordinate axes). Everything in this paper would work essentially the same.

2.1. Folded bridge construction in Zd. Let F ⊂ Zd be finite with m + 1 > 1
connected components C0,C1, . . . ,Cm. Pick m + 1 points a j ∈ C j with a0 = 0
for simplicity. Then there exists a path v0, . . . , vn−1 ∈ Zd, where each v j is a
neighbor of or equal to v j±1, and

v0 = a0 = 0, vn−1 = am

and each a j, j = 0, 1, . . . ,m, belongs to the path

γ : v0, v1, . . . , vn−1.

Thus the path v j connects all connected components of F. See Fig. 1.
Define the sequence S =

{
s j : j = 0, 1, . . . , 2n − 1

}
⊆ Z2, as follows.

s0 = (0, 0), s1 = (1, 0), . . . , sn−1 = (n − 1, 0),
sn = (n − 1, 1), sn+1 = (n − 2, 1), . . . , s2n−2 = (1, 1), s2n−1 = (0, 1).

(3)

as in Figure 2.
From F ⊆ Zd we construct the set F′ ⊆ Zd+2 by

F′ = F × {0}2 + X
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C0

a0

C1

a1

C2

a2

γ
γ

Figure 1. The path γ, consisting of the points v0, . . . , vn−1 visits
all connected components of F.

s0 s1
sn−1

sns2n−1

Figure 2. The sequence S = {s0, . . . , s2n−1} ⊆ Z2. There are 2(m−1)
rows in this array, each of length n.

where
X = {X0,X1, . . . ,X2n−1}

= {(0, s0), (0, s1), (0, s2), . . . , (0, sn−1),
(v0, sn), (v1, sn+1), . . . , (vn−1, s2n−1)}.

Notice that this is a disjoint sum since the s j are all different (so that |F′| =
|F| · 2n).
Lemma 2.1. The set X is connected in Zd+2.

Proof. We first observe that for j = 0, 1, . . . ,n − 2 the point X j = (0, j, 0) is con-
nected to X j+1 = (0, j + 1, 0) since they only differ at one coordinate and only by
1. We also have that Xn−1 = (0,n− 1, 0) is connected to Xn = (0,n− 1, 1) (remem-
ber v0 = a0 = 0) since they only differ at the last coordinate by 1. Finally, if
j ≥ n then X j = (v j−n, j, 1) is connected to X j+1 = (v j−n+1, j+ 1, 1) since their first d
coordinates form two connected points in Zd (since v j−n is connected to v j−n+1)
and they also differ by 1 at the d + 1 coordinate. □

We imagine a copy ofZd “hanging” from each of the 2n cells in Figure 2, and,
as we move from left to right and then left again, the copy of F in that copy of
Zd is translated by the vectors 0, . . . , 0︸  ︷︷  ︸

n

, v0, v1, . . . , vn−1.

We call this construction a “folded bridge” between the connected compo-
nents C0,C2, . . . ,Cm of F, giving F′. See Figure 3 for a visual illustration of the
notion for the case m = 2 (three connected components).
Lemma 2.2. F′ is connected in Zd+2.
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Figure 3. How F′ is constructed from F. A folded bridge on the set
F (blue is F × [0, 1]2) connecting its three connected components.
The red line is the ambient space for F, namely Zd.

Proof. We first observe that

F′ = F × {0}2 + X =
m⋃

j=0

(C j × {0}2 + X),

and each C j × {0}2 +X is connected from Lemma 2.1 and the fact that the sum
of two connected sets is connected. It remains to show that the connected sets
C j × {0}2 + X connect to each other as well. We show that for j ≥ 1 the set
C j × {0}2 + X connects to C0 × {0}2 + X. Indeed, there exists k ∈ {0, 1, . . . ,n − 1}
such that a j = vk (by the construction of the path v j, j = 0, . . . ,n − 1). Then
(recall that a0 = 0)

(a j, sn+k) = (a0 + vk, sn+k) ∈ C0 × {0}2 + X

and
(a j, sn−k−1) ∈ C j × {0}2 + X.

These two points have the same first d + 1 coordinates and differ only in the
last coordinate where the first point has 1 and the second has 0. (The point
sn+k is right above sn−k−1 in Fig. 2.) □

By Theorem 2.1 we have that F′ is aperiodic in Zd+2 if F is aperiodic in Zd.
Using this, we can finally prove Theorem 1.2:

Proof of Theorem 1.2. By [GT22, Corollary 1.5], if d is sufficiently large, we
can choose a finite F ⊂ Zd which is an aperiodic translational tile. By applying
the “folded bridge” construction above we obtain a set F′ ⊂ Zd+2 which is con-
nected, and is also an aperiodic translational tile (by Theorem 2.1, since S is
a rectangle). Let Rd+2 be the “dented (d + 2)-dimensional cube” constructed in
the proof of [GT22, Lemma 2.2]. Observe that by construction of Rd+2, the set
F′+Rd+2 ⊂ Rd+2 is connected if and only if F′+ [0, 1]d+2

⊂ Rd+2 is connected; thus,
since F′ is connected inZd+2 in the sense of Definition 2.1, F′+Rd+2 is connected
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inRd+2. Moreover, the argument in the proof of [GT22, Theorem 2.1] gives that
F′ + Rd+2 is aperiodic in Rd+2, since F′ is aperiodic in Zd+2. Finally, note that
F′ +Rd+2 ⊂ Rd+2 is equal to the closure of its interior. Theorem 1.2 now follows,
with Ω being F′ + Rd+2. □

3. Connected spectral sets that do not tile

The ultimate goal of this section is to prove Theorem 1.4. We begin with
the following general theorem, which shows that certain operations allow to
construct, from a given spectral set Ω, other sets that are spectral as well and
that preserve the tiling property of the original set Ω.
Theorem 3.1 (Spectrality and tiling preserving operations). LetΩ be a bounded,
measurable set in Rd. Define the finite set

X =
{
(v j, s j) : j = 0, 1, . . . ,n − 1

}
⊆ Rd+k

where v0, . . . , vn−1 ∈ Rd and s0, . . . , sn−1 are n distinct points in Zk such that
S = {s j : j = 0, 1, . . . ,n − 1}

tiles Zk by translations. Let Ω′ =
(
Ω × [0, 1]k

)
⊕ X. Then:

(i) Ω′ tiles Rd+1 by translations if and only if Ω tiles Rd by translations.
(ii) If Ω ⊂ Rd and S + [0, 1]k

⊂ Rk are spectral, then Ω′ is spectral in Rd+k.

Proof of Theorem 3.1 (i). If A ⊕Ω = Rd then A′ ⊕Ω′ = Rd+k, where
A′ = A × T

and T ⊂ Zd is a tiling ofZk by S. Conversely, ifΩ′⊕A′ = Rd+k then, by a similar
argument as in the proof of Theorem 2.1, the set (2) is a tiling of Rd

× {0}k by
Ω × {0}k. □

Proof of Theorem 3.1 (ii). Let Λ ⊂ Rd be a spectrum for Ω and Σ ⊂ Rk be a
spectrum for S + [0, 1]k, then the Cartesian product set

Λ′ := Λ × Σ = {(λ, σ) ∈ Rd+k : λ ∈ Λ, σ ∈ Σ}

defines an orthogonal system
E(Λ′) = {e2πiλ′·x

}λ′∈Λ′

in L2(Ω′). Indeed, let τ = (λ, σ), τ′ = (λ′, σ′) be distinct points in Λ′. By (1), we
need to show that
(4) 1̂Ω′(τ′ − τ) = 0.

Observe that by the definition of Ω′ we have

1Ω′(w1, . . . ,wd+k) = 1Ω(w1, . . . ,wd)1[0,1]k(wd+1, . . . ,wd+k) ∗

∑
x∈X

δx

 (w1, . . . ,wd+k).

Therefore

(5) 1̂Ω′(ξ1, . . . , ξd+k) = 1̂Ω(ξ1, . . . , ξd)1̂[0,1]k(ξd+1, . . . , ξd+k)

∑
x∈X

e2πix·(ξ1,...,ξd+k)

 .
If λ′, λ are distinct in Λ, then by (1)

1̂Ω(λ′ − λ) = 0,
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since Λ is a spectrum for Ω, and so, in particular E(Λ) is orthogonal in L2(Ω).
Thus, in this case by (5) we see that (4) is satisfied. Otherwise, λ′ − λ = 0 and
σ, σ′ are distinct in the spectrum Σ of S + [0, 1]k, so by (1)

̂1S+[0,1]k(σ′ − σ) = 0.

By (5) we then have:

1̂Ω′(τ′ − τ) = 1̂Ω(0)1̂[0,1]k(σ′ − σ)

∑
x∈X

e2πix·(0,σ′−σ)


= |Ω|1̂[0,1]k(σ′ − σ)

∑
s∈S

e2πis·(σ′−σ)


= |Ω| ̂1S+[0,1]k(σ′ − σ) = 0.

Therefore (4) is satisfied in this case as well, and hence E(Λ′) is orthogonal in
L2(Ω′), as claimed. Now, observe that

densΛ′ = densΛ × Σ = densΛ · densΣ.

Thus, asΛ is a spectrum forΩ and Σ is a spectrum for S+[0, 1]k, by Proposition
1.1, we have

densΛ′ = |Ω||S + [0, 1]k
| = |Ω|n = |Ω′|.

A further application of Proposition 1.1 then gives that Ω′ is spectral. □

3.1. Folded bridge construction in Rd. Let Ω be a bounded, open set in Rd

with m + 1 > 1 connected components C0,C1, . . . ,Cm. Pick m + 1 points a j in the
interior of C j each and assume for simplicity a0 = 0. Let K be large enough so
that if δi =

1
K (ai+1 − ai), i = 0, . . . ,m − 1, we have

(6) Ci ∩ (Ci + δ j) , ∅ for all i, j.

Let n = mK + 1 and define the sequence v j, j = 0, 1, 2, . . . ,n − 1, to consist of the
n values

a0, a0 + δ0, a0 + 2δ0, . . . , a0 + (K − 1)δ0,

a1, a1 + δ1, a1 + 2δ1, . . . , a1 + (K − 1)δ1,

a2, a2 + δ2, a2 + 2δ2, . . . , a2 + (K − 1)δ2,

· · ·

am−1, am−1 + δm−1, am−1 + 2δm−1, . . . , am−1 + (K − 1)δm−1,

am

or:
v j = a j̃ + ( j − Kj̃)δ j̃,

where j̃ =
⌊

j
K

⌋
, so that, in particular, all points a0, a1, . . . , am belong to the se-

quence v j, j = 1, . . . ,n − 1. We then define
Ω1 = Ω × [0, 1]2 + X

where
X = {X0,X1, . . . ,X2n−1}

= {(0, s0), (0, s1), (0, s2), . . . , (0, sn−1),
(v0, sn), (v1, sn+1), . . . , (vn−1, s2n−1)},

where s j ∈ R2 is the sequence defined in (3) and shown in Figure 2. Notice that
this is a disjoint sum up to measure zero since the s j are all different.
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Let us now see why the set Ω1 is connected. The first observation is that
the sets C j × [0, 1]2 are connected. In other words, for every ω1, ω2 ∈ Ω and
x1, x2 ∈ [0, 1]2

(7) ω1, ω2 connected in Ω =⇒ (ω1, x1), (ω2, x2) connected4 in Ω × [0, 1]2.

When moving from one cell of Figure 2 to the next, the two sets
Ci × [0, 1]2 + (v j, s j) and Ci × [0, 1]2 + (v j+1, s j+1)

are connected to each other because they have a non-empty intersection, by (6)
and the fact that s j and s j+1 differ in one coordinate only and exactly by 1, so
s j − s j+1 ∈ [−1, 1]2, the latter set being the difference set of [0, 1]2.

Hence, when we move across one cell in Figure 2, following the path, the
connected components are either maintained or merging, so new connected
components are not created along the way. Merging happens when we are
moving on the upper row (see an illustration in Figure 3). Take j ≥ 1 and let
vk be such that a j = vk. Then

(a j, sn+k) = (a0 + vk, sn+k) ∈ C0 × [0, 1]2 + X

and
(a j, sn−k−1) ∈ C j × [0, 1]2 + X.

At that point the set C j × [0, 1]2 +X gets connected to C0 × [0, 1]2 +X, so, in the
end we are left with one connected set.

By Theorem 3.1 we have:
(i) Ω1 tiles Rd+2 by translations if and only if Ω tiles Rd by translations.

(ii) Ω1 is spectral in Rd+2 if Ω is spectral in Rd.
Using this, we can now prove Theorem 1.4:

Proof of Theorem 1.4. By [T04, Theorem 1.2] and [KM1, Section 3], if d ≥ 3, we
can choose a finite union of closed unit cubesΩ ⊂ Rd which is spectral but does
not tile by translations. Hence, by applying the construction above we obtain
a set Ω1 ⊂ Rd+2 which is connected, spectral and does not tile Rd+2 by transla-
tions. Moreover, observe that by construction, if Ω is a finite union of closed
d-dimensional unit cubes,Ω1 is a finite union of closed (d+2)-dimensional unit
cubes. In particular, Ω1 is the closure of its interior. This proves Theorem
1.4. □

4. Connected translational tiles that are not spectral

Let Ω be a bounded measurable set in Rd and let v ∈ Rd be a vector. Let
u = (v, 1) ∈ Rd+1, n ≥ 1. We say that the set
(8) Ω′ B Ω × [0, 1] + {0,u, 2u, . . . , (n − 1)u}

is a stacking of Ω. See Figure 4 for a visual illustration of the notion.
Note that by Theorem 3.1 (ii) we have that a stacking Ω′ of Ω tiles Rd+1 by

translations if and only if Ω tiles Rd by translations.
In addition, we have the following:

Theorem 4.1. Let Ω be a measurable set in Rd of finite measure. Suppose that
Ω′ is a stacking of Ω. If Ω′ ⊂ Rd+1 is spectral then Ω ⊂ Rd is spectral.

4We say that two points are connected in a set if they both belong to the same connected
component of the set.
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Figure 4. A stacking Ω′ of the set Ω in one dimension higher.

Remark 4.1. Note that Theorem 3.1(ii) gives that the converse is also true: If
Ω ⊂ Rd is spectral then Ω′ ⊂ Rd+1 is spectral. However, in this section we will
only use the direction in the statement of Theorem 4.1.

Proof. We have
1Ω′ = 1Ω×[0,1] ∗ (δ0 + δu + · · · + δ(n−1)u)

so, when u · ξ < Z, with ξ = (ξ1, ξ2, . . . , ξd+1) ∈ Rd+1, we have

1̂Ω′(ξ) = 1̂Ω(ξ1, . . . , ξd)1̂[0,1](ξd+1)

 n−1∑
j=0

e2πi j(u·ξ)


= 1̂Ω(ξ1, . . . , ξd)1̂[0,1](ξd+1)

1 − e2πin(u·ξ)

1 − e2πi(u·ξ)
.(9)

(Since we care about zeros introduced beyond those of 1̂Ω×[0,1] we may assume
that u · ξ < Z – see below.) Define the subgroup of Rd+1

G =
{
ξ = (ξ1, ξ2, . . . , ξd+1) : u · ξ ∈

1
n
Z

}
and its subgroup of index n

H = {ξ = (ξ1, ξ2, . . . , ξd+1) : u · ξ ∈ Z}.

From (9) it follows that the zeros of 1̂Ω′ are those due to 1̂Ω×[0,1] plus the union
of cosets of H in G

D =
(
H +

u
n∥u∥2

)
∪

(
H +

2u
n∥u∥2

)
∪ . . . ∪

(
H +

(n − 1)u
n∥u∥2

)
.

If two distinct points of Rd+1 are in the same coset of H then their difference is
in H, so it is not in D.

Suppose Λ′ ⊆ Rd+1 is a spectrum of Ω′. Then, by Proposition 1.1:
densΛ′ = |Ω′| = n|Ω| = n|Ω × [0, 1]|

(since for every 0 ≤ j < j′ ≤ n − 1, |(Ω × [0, 1] + ju) ∩ (Ω × [0, 1] + j′u)| = 0).
We will now select elements of Λ′ of density at least |Ω × [0, 1]| whose pairwise
differences do not intersect D. If we call Λ the set of those elements of Λ′ that
we kept, it follows that the pairwise differences of Λ all fall in

{
1̂Ω×[0,1] = 0

}
.
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To select the points of Λ′, we want we look at every coset λ + G, λ ∈ Λ′. For
each λ0 ∈ Λ

′, at least a fraction 1/n of the points in Λ′ ∩ λ0 + G are on one of
the cosets
(10) λ0 +H + jũ, j = 0, 1, . . . ,n − 1

of H, where
ũ =

u
n∥u∥2

.

We keep precisely those points of Λ′ on λ0+G, i.e., those on the most populated
(highest density) of the n cosets (10). It follows that for any two points we kept
their difference is either not in G (hence also not in D ⊆ G) or, if their difference
is in G, then it is in H, hence again not in D.

Thus, we conclude that if Λ′ is a spectrum for Ω′ then we have that E(Λ) is
orthogonal in L2(Ω×[0, 1]). Moreover, by the construction ofΛ its lower density
is bounded from below by

1
n

densΛ′ = |Ω × [0, 1]|.

By Proposition 1.1, we then have that Ω× [0, 1] is spectral. Thus, from [GL16,
Theorem 1.1] it follows that Ω is spectral. □

Using Theorem 4.1, we can finally prove Theorem 1.5:

Proof of Theorem 1.5. Let d ≥ 3. By [KM2], we can choose a finite disjoint
union of unit cubes Ω ⊂ Rd which tiles the space by translations and is not
spectral.

Our goal is to construct higher dimensional bridges between the connected
components of Ω while preserving its tiling and spectral properties.

We denote by C1, . . . ,Cm ⊂ Ω , m > 1, the connected components of Ω, and let
C̃ j be the set of the centers of the cubes that C j consists of. We may assume,
without the loss of generality, that

min
1≤i< j≤m

min{∥ci − c j∥ : ci ∈ C̃i, c j ∈ C̃ j} = min{∥c1 − c2∥ : c1 ∈ C̃1, c2 ∈ C̃2}.

Let
D(C1,C2) B min{∥c1 − c2∥ : c1 ∈ C̃1, c2 ∈ C̃2} = ∥b − a∥

where a ∈ C̃1, b ∈ C̃2 are centers of unit cubes in C1, C2 of minimal distance.
Let n =

⌈
D(C1,C2)

⌉
be the natural number closest (from above) to ∥b−a∥, so that

(11) |C j ∩ (C j + v)| > 0, j = 1, . . . ,m

where v = (b−a)
n ∈ Rd. Consider the stacking Ω1 of Ω:

(12) Ω1 := (Ω × [0, 1]) ⊕
{
0,u, 2u, . . . ,

⌊n
2

⌋
u
}

where u = (v, 1) ∈ Rd+1. This is a disjoint sum because of the 1 in the last
coordinate of u, up to measure zero. In other words, for every 0 ≤ j < j′ ≤

⌊
n
2

⌋
|(Ω × [0, 1] + ju) ∩ (Ω × [0, 1] + j′u)| = 0.

By Theorem 3.1 we know that Ω1 tiles Rd+1 since Ω tiles Rd and from Theorem
4.1 we also have that Ω1 is not spectral since Ω is not spectral. We denote

C1
j = (C j × [0, 1]) ⊕

{
0,u, 2u, . . . ,

⌊n
2

⌋
u
}
, j = 1, . . . ,m.
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Then, by (11), for each j = 1, . . . ,m, the set C1
j is a connected finite union of unit

cubes with centers

C̃1
j :=

(
C̃ j ×

{1
2

})
⊕

{
0,u, 2u, . . . ,

⌊n
2

⌋
u
}
.

Let
D(C1

1,C
1
2) B min

{∥∥∥c1
1 − c1

2

∥∥∥ : c1
1 ∈ C̃1

1, c
1
2 ∈ C̃1

2

}
and n1 B

⌈
D(C1

1,C
1
2)

⌉
. Observe that, as(

a,
1
2

)
+

⌊n
2

⌋
u ∈ C1

1,
(
b,

1
2

)
∈ C1

2,

and
n − 1 < ∥a − b∥ = DC1,C2 ≤ n

we have:

D(C1
1,C

1
2) ≤

∥∥∥∥∥(a, 12)
+

⌊n
2

⌋
u −

(
b,

1
2

)∥∥∥∥∥
=

∥∥∥∥∥∥
(
(a − b) +

⌊n
2

⌋ (b − a)
n
,
⌊n

2

⌋)∥∥∥∥∥∥
=

1
2


∥∥∥∥(n+1

n (a − b),n − 1
)∥∥∥∥ n is odd

∥(a − b,n)∥ n is even

=
1
2


√(

n+1
n ∥a − b∥

)2
+ (n − 1)2 n is odd√

∥a − b∥2 + n2 n is even

≤
1
2


√

2
(

n+1
n ∥a − b∥

)2
n is odd

√

2n2 n is even

=
1
√

2

{n+1
n D(C1,C2) n is odd

n n is even .(13)

a b∥b− a∥

c

∼ ∥b−a∥√
2

Figure 5. Shortening the distance between two connected com-
ponents. The slope of the line from a to c is approximately 1 when
n is large. The blue set is Ω × [0, 1] ⊆ Rd

×R.

We have the following possible cases:
Case 1: If D(C1,C2) < 2, then n ≤ 2 and we have that C1

1 ∪C1
2 is connected. Indeed,

clearly D(C1,C2) > 1 as otherwise C1∩C2 is non-empty but this contradicts
the assumption that C1,C2 are different connected components; there-
fore, we must have n = 2, u = ( b−a

2 , 1) and the cube in C1
1 that is centered
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at ( a+b
2 ,

3
2 ) intersects also the side of the cube centered at (b, 1

2 ) in C1
2.

Thus, Ω1 has at most m − 1 connected components. (See Figure 6.)

a b

Figure 6. This is Case 1, with D(C1,C2) < 2.

Case 2: If D(C1,C2) ≥ 2, then, by (13):

(14) D(C1
1,C

1
2) <

4

3
√

2
D(C1,C2) < 0.94281 ·D(C1,C2).

Indeed, if D(C1,C2) = n = 2, then (13) gives

D(C1
1,C

1
2) ≤

D(C1,C2)
√

2

which implies (14). If 3 ≤ n is odd, then (13) implies (14), since

(n + 1)
n

≤
4
3

in this case. Otherwise, 4 ≤ n is even, and then by (13) we have

D(C1
1,C

1
2) ≤

n
√

2
≤

D(C1,C2) + 1
√

2
,

which implies (14) since

D(C1,C2) + 1 <
4
3

D(C1,C2)

in this case.

Unless Case 1 applies, we repeat the process above. In the k-th iteration
(k ≥ 2), the distance between the components Ck−1

1 and Ck−1
2 of Ωk−1 ⊂ Rd+k−1

shrinks at a uniform rate in Ck
1,C

k
2 ⊂ Ωk ⊂ Rd+k. (See Figure 5.) Hence, after

l < ∞ iterations, we obtain a set Ωl in Rd+l which is a tile and is not spectral
and such that D(Cl−1

1 ,C
l−1
2 ) < 2. Therefore, as in Case 1 above, the set Cl

1 ∪ Cl
2 in

Ωl ⊂ Rd+l is connected. We constructed a “spiral bridge” in Ωl ⊂ Rd+l between
the original components C1 and C2 of Ω, thus Ωl has at most m − 1 connected
components.

We iterate this process, constructing m − 1 spiral bridges between all the
components of the original setΩwhile preserving its tiling and non-spectrality
properties, to eventually obtain a connected set Ω̃ ⊂ Rd̃ which tiles the space
by translations and is not spectral. Finally, observe that by construction, Ω̃ is
a finite union of closed unit cubes, hence Ω̃ is the closure of its interior. This
completed the proof of Theorem 1.5. □
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Figure 7. Two steps of the stacking procedure. The blue set is
Ω × [0, 1]2

⊆ Rd
× R2. The distance between the two connected

components is being reduced exponentially. The bottom layer of
the cubes is the same as that in Fig. 5, where they are shown in
dimension d + 1 (after just one step of the stacking procedure.

5. Discussion and open problems

5.1. Repairing the periodic tiling conjecture. Despite the fact that sev-
eral positive results towards Conjecture 1.1 have been obtained over the years
(see [GT22, Section 1] for a partial list), the conjecture was recently proven
to be false in high dimensions [GT22]. However, the aperiodic translational
tile constructed in [GT22] is a very complicated disconnected set, and, on the
other hand, Conjecture 1.1 is known to hold for convex domains in all dimen-
sions [M80, V54] in a strong sense: every convex translational tile is also a
lattice tile. This naturally motivates one to seek the weakest regularity as-
sumption on the structure of a set under which the periodic tiling conjecture
is true in all dimensions.

In this paper we construct aperiodic translational tiles which are connected,
showing that a connectedness assumption is not strong enough for the purpose
of repairing the periodic tiling conjecture. We therefore must strengthen it,
and look for a regularity assumption in the spectrum between connectedness
and convexity. This gives rise to the following questions:

Question 1. Does Conjecture 1.1 hold for simply connected sets in all dimen-
sions?

We suspect that by adapting the method in this paper, constructing folded
bridges between the connected components, one might prove a negative answer
to Question 1. Upon a negative answer to Question 1, we can further ask:

Question 2. Does Conjecture 1.1 hold for topological balls in all dimensions?

Note that while Conjecture 1.1 is still open in the plane5, it is known to be
true for topological disks [BN91,Ken92].

5.2. Repairing Fuglede’s conjecture. Conjecture 1.3 inspired extensive re-
search concerning the connection between spectrality and tiling by transla-
tions. Over time, it has became apparent that in many respects, spectral sets
“behave like" sets which can tile the space by translations. However, after a few
decades, counterexamples to both directions of the conjecture were constructed
in dimension d ≥ 3 (see [KM10, Section 4] and the references therein).

5But is known to be true in Z2 [B20].
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Although the connection between the analytic notion of spectrality and the
geometric notion of tiling by translations has been intensively studied, the
precise connection is still a mystery.
Question 3. What is the precise connection between spectral sets and transla-
tional tiles?

This suggests the problem of determining the exact conditions under which
Conjecture 1.3 holds. In this paper, we solve the problem for connected sets,
showing that there are connected counterexamples to Fuglede’s conjecture.
On the other hand, Conjecture 1.3 was proven to hold for convex domain in
all dimensions [IKT03,GL17,LM19]. This suggests the study of the following
question:
Question 4. Are there any topological conditions on a set that force either of
the directions of the Conjecture 1.3 to be true?

5.3. Connectedness in low dimensions. Our main results, Theorems 1.2,
1.4 and 1.5, demonstrate that the higher the dimension is the weaker a con-
nectedness assumption becomes. In particular, we show that any aperiodic
d-dimensional translational tile gives rise to a (d + 2)-dimensional aperiodic
connected translational tile. One can ask about the necessity of the two addi-
tional dimensions, as follows:
Question 5. What is the minimal d such that there is a d-dimensional connected
aperiodic translational tile?

We can ask the corresponding questions in the context of Conjecture 1.3:
Question 6. What is the minimal d ≤ 5 such that there is a d-dimensional
connected counterexample to the direction “spectral⇒ tiles” of Conjecture 1.3?
Question 7. What is the minimal d such that there is a d-dimensional connected
counterexample to the direction “tiles⇒ spectral” of Conjecture 1.3?

In particular, can the proof of Theorem 1.5 be amended to give a connected,
non-spectral tile in a known dimension, in the spirit of Theorem 1.4? Notice
that the construction in the proof of Theorem 1.5 of spiral bridges goes up in
dimension by a number that depends on the tile we are starting from.

5.4. Aperiodicity and spectrality. In [F74] it was observed that by the
Poisson summation formula, for a lattice Λ ⊂ Rd, a measurable set Ω ⊂ Rd

tiles by translations along Λ if and only if the dual lattice Λ∗ is a spectrum
for Ω. This might be regarded as the motivation for Conjecture 1.3. Thus,
the recent discovery of aperiodic translational tiles [GT22] brings up the ques-
tion about possible connection between counterexamples to Conjecture 1.1 and
counterexamples to Conjecture 1.3:
Question 8. Is there any aperiodic translational tileΩ ⊂ Rd which is spectral?

Note that a negative answer to Question 8 would give rise to a new class of
counterexamples to Fuglede’s conjecture.

5.5. Quantitative aperiodicity in dimension 1. It is well known that if a
finite F ⊆ Z tiles Z by translation then the tiling is necessarily periodic [N77].
In other words if F⊕A = Z then there is N > 0 such that A+N = A. How large
can or must this N be compared to a measure of size of F, let us say compared to
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the diameter D of F? While it is known that N can be even exponentially large
in D [K03,S05,S09] , and must be at most polynomially large in D, when |F| is
kept fixed [GT20], no example of a tile F is known where the minimal possible
such N (over all possible tilings by F) is more than linearly large in D. Such a
tile F, all of whose tilings by translation would have periods much larger than
D, would be a one-dimensional, quantitative analogue of aperiodicity.
Question 9. Does there exist a family of finite sets Fn ⊆ Z with diameter

diam Fn →∞

which tile by translation and the minimal period Nn of the tilings that Fn admits
satisfies

Nn

diam Fn
→∞?
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