
CIRCLE DISCREPANCY FOR CHECKERBOARD MEASURES

MIHAIL N. KOLOUNTZAKIS AND IOANNIS PARISSIS

Abstract. Consider the plane as a union of congruent unit squares in a checkerboard
pattern, each square colored black or white in an arbitrary manner. The discrepancy of a
curve with respect to a given coloring is the difference of its white length minus its black
length, in absolute value. We show that for every radius t ≥ 1 there exists a full circle of
radius either t or 2t with discrepancy greater than c

√
t for some numerical constant c > 0. We

also show that for every t ≥ 1 there exists a circular arc of radius exactly t with discrepancy
greater than c

√
t. Finally we investigate the corresponding problem for more general curves

and their interiors. These results answer questions posed by Kolountzakis and Iosevich.

1. Introduction.

In this note we take up the investigation, initiated in [3] and continued in [2], concerning
the discrepancy of various geometrical shapes with respect to non-atomic measures (color-
ings). In order to discuss the problems we are interested in we need to introduce some
notation. As in [2, 3] we divide the Euclidean plane R2 into the unit cells

Qp
def
= [p1, p1 + 1) × [p2, p2 + 1), p = (p1, p2) ∈ Z2,

and color each one of the cells either black or white. Thus a checkerboard coloring f of the
plane is a function

f : R2
→ {−1,+1},

such that f is constant on each unit cell Qp. Now let S be a simple curve lying in the
checkerboard-plane and f be a coloring as before. We define the discrepancy of S with
respect to the given coloring f to be the difference of the ‘white’ length of S against the
‘black’ length of S, in absolute value. In [3] it was proved that for any checkerboard
coloring there exist arbitrarily long line segments I with discrepancy at least c

√
|I|, for

some numerical constant c > 0. On the other hand in [2] the authors proved that for
arbitrarily large R > 0 there exists a circular arc of radius comparable to R which has
discrepancy at least c

√
R for some numerical constant c > 0. The authors in [2] also ask

whether there is a full circle C with large discrepancy. We answer this question in a strong
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form by showing that for every radius t ≥ 1 there exists a full circle of radius either t or 2t
with discrepancy at least c

√
t. Noting by C(x, t) the circle of radius x ∈ R2 and radius t > 0

we have:

Theorem 1.1. Let f be a checkerboard coloring of the plane as before and let t ≥ 1.There exists a
x ∈ R2 such that

either
∣∣∣∣∣∫

C(x,t)
f
∣∣∣∣∣ ≥ ct

1
2 or

∣∣∣∣∣∫
C(x,2t)

f
∣∣∣∣∣ ≥ c(2t)

1
2 ,

for some numerical constant c > 0.

We also show that if we just care about finding arcs with large discrepancy, then we can
do so for any fixed radius t ≥ 1.

Theorem 1.2. Let f be a checkerboard coloring of the plane as before and let t ≥ 1.There exists a
circular arc K of radius t such that ∣∣∣∣∣∫

K
f
∣∣∣∣∣ ≥ ct

1
2 ,

for some numerical constant c > 0.

The results in [3], [2] as well as Theorem 1.1 and Theorem 1.2, are direct consequences
of their finite counterparts. To make this precise, let N be a positive integer and write QN

for the square QN
def
= [0,N)2. We now consider QN as a union of congruent unit cells in the

form

Q(p) def
= p + [0, 1)2, p = (p1, p2) ∈ G,

where G is the part of the latticeZ2 that lies in QN, that is G def
= {(p1, p2) : 0 ≤ p1, p2 ≤ N−1}.

A coloring of QN will be a function of the form

fN : QN → {−1,+1}, fN constant in each cell Q(p).

We extend fN to the whole plane R2 by setting fN ≡ 0 outside QN. The discrepancy of a
circle C(x, t) with center x ∈ R2 and radius t > 0 is defined as

Dt( fN, x) def
=

∫
C(x,t)

fN = ( fN ∗ σt)(x),

where σt is the arc-length measure on a circle of center 0 and radius t. A problem that arises
is that discrepancy of circles with respect to a finite coloring in general only corresponds
to discrepancy of arcs with respect to a coloring of the whole plane. The reason of course
is that a circle C(x, t) might intersect QN, and even have large discrepancy with respect to
the finite coloring of QN, without necessarily lying entirely inside QN.

For example, Iosevich and the first author prove in [2, Theorem 1] that for any coloring
fN of QN, there exists a circular arc K of radius R, N/5 < R < N/4, with∣∣∣∣∣∫

K
fN

∣∣∣∣∣ ≥ cN
1
2 ,
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for some numerical constant c > 0. The authors are not able to conclude that there is a full
circle with large discrepancy since their main tool is to show that the L2-type discrepancy

1
N3

∫ N/4

N/5

∫
R2
|Dt( fN, x)|2dx dt,

is large. However, the previous L2 integral takes into account arcs as well as full circles.
Furthermore, the averaging in the radial variable results to circles or circular arcs of radius
comparable to N instead of radius exactly N.

In this note we partially fix the previous two problems by avoiding the radial averaging.
We also show that circles that do not lie entirely inside QN do not significantly contribute
to the L2 norm ‖Dt( f , ·)‖2L2 + ‖D2t( f , ·)‖2L2 when N & t2. This results to a full circle of radius
either t or 2t with large discrepancy if t is small comparable to N.

Theorem 1.1 is an immediate consequence of the following theorem:

Theorem 1.3. Let t ≥ 1 and for a positive integer N ≥ 100t2 consider any finite coloring
fN : QN → {−1,+1} of QN. There exists x ∈ R such that the circle C(x, 2t) ⊂ QN and

either
∣∣∣∣∣∫

C(x,t)
fN

∣∣∣∣∣ ≥ ct
1
2 or

∣∣∣∣∣∫
C(x,2t)

fN

∣∣∣∣∣ ≥ c(2t)
1
2 ,

where c > 0 is some numerical constant.

Similarly, Theorem 1.2 is a consequence of:

Theorem 1.4. Let fN : QN → {−1,+1} be a finite coloring of QN and N ' t. There exists a circle
C of radius t such that ∣∣∣∣∣∫

C
fN

∣∣∣∣∣ ≥ c
√

t,

where c > 0 is some numerical constant.

Remark 1.1. Note that in Theorem 1.4 we cannot guarantee that the circle C is contained in
QN. Thus, Theorem 1.4 only results to an arc of radius t in the infinite coloring of the plane
with discrepancy ∼

√
t.

We note that discrepancies with respect to non-atomic colorings have been considered by
Rogers in [5], [6] and [7] where the author considers, among other things, the discrepancy
of lines and half spaces with respect to finite colorings of the plane. Rogers proves lower
bounds for the discrepancy of these families of sets with respect to generalized colorings.
His results do not seem to be comparable to the results in this paper.

The rest of the paper is organized as follows. In Section 3 we use the classical asymptotic
estimates for the Fourier transform of the arc-length measure on the circle in order to prove
Theorem 1.3. In Section 4 we prove Theorem 1.4 by an appeal to the asymptotic estimates
of the Fourier transform of the arc-length measure together with an appropriate Poincaré-
type inequality. Finally in Section 5 we discuss the discrepancy of more general families of
sets with respect to a coloring of the plane. The corresponding lower bounds are contained
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in Theorem 5.1. The main tool for these estimates are lower bounds for the averages of
Fourier transforms of indicator functions. For the sake of completeness, we include these
estimates and their proofs in Section 5.1.

2. Notations

Throughout the paper c denotes a numerical positive constant which might change even
in the same line of text. We often suppress numerical constants by using the symbol ..
Thus A . B means that A ≤ cB for c as described. Likewise the notation A ' B means that
A . B and A & B. We write B(x, r) for the Euclidean disk of radius r > 0 centered at x ∈ R2.
We also write C(x, r) = ∂B(x, r) for the circle of radius r > 0, centered at x ∈ R2. For the unit
circle of R2 we also use the symbol S1 = C(0, 1).

3. Full circles of large discrepancy

Recall that the discrepancy of a circle C(x, t) with respect to the coloring fN of the square
QN = [0,N)2 is defined as

Dt( fN)(x) def
=

∫
C(x,t)

f = ( f ∗ σt)(x),

where σt is the arc-length measure on the circle C(0, t). Observe that the function ( fN ∗σt)(x)
has support in QN + B(0, t) in general. However in Theorems 1.3 and 1.4 we only need to
consider values t . N so the measure of the support is comparable to N2. We thus study
the L2 discrepancy

Dt( fN, 2) def
=

( 1
N2

∫
R2
|( fN ∗ σt)(x)|2dx

) 1
2

,

since we obviously have the bound

sup
x∈R2

|Dt( fN)(x)| & Dt( fN, 2).

Furthermore, denoting by σ̂1 the Fourier transform of the measure dσ1,

σ̂1(ξ) =

∫
S1

e−2πix′·ξdσ1(x′),

we have that

Dt( fN, 2)2 =
t2

N2

∫
R2
| f̂N(ξ)|2|σ̂1(tξ)|2dξ.

The following Lemma is the most essential part of the proof of Theorem 1.3.

Lemma 3.1. For all |ξ| ≥ 1
2π we have that

|σ̂1(ξ)|2 + |σ̂1(2ξ)|2 &
1
|ξ|
.
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Proof. Setting |ξ| = r we express the radial function σ̂1 by the well known formula

σ̂1(r) = 2πJ0(2πr),

where J0 is the 0-th order Bessel function. We use the asymptotic estimate

J0(r) '
1
√

r

(
cos(r −

π
4

) + e(r)
)
,

where the error term satisfies
|e(r)| ≤

1
5r
,

for r ≥ 1. This is classical as r→ +∞ but with a little more effort one can get the validity of
the previous estimate for all r ≥ 1. The previous asymptotic estimate easily implies that

|σ̂1(r)|2 + |σ̂1(2r)|2 &
1
r
,

for all r ≥ 7
2π . For 1

2π ≤ r ≤ 7
2π one can just directly check the zeros of J0 to see that there is

no r so that Jo(2πr) = J0(4πr) = 0. We refer the interested reader to [4, p. 113, §6.3] where an
identical argument is used for the derivation of a formula involving the 1-st order Bessel
function. �

Corollary 3.1. For any t ≥ 1 and any positive integer N we have that

Dt( fN, 2)2 + D2t( fN, 2)2 & t.

Proof. We use Plancherel’s theorem to write

Dt( fN, 2)2 + D2t( fN, 2)2 =
1

N2

∫
R2
| f̂N(ξ)|2

(
|σ̂t(ξ)|2 + |σ̂2t(ξ)|2

)
dξ

&
1

N2

∫
|ξ|≤ 1

2π

| f̂N(ξ/t)|2
(
|σ̂1(ξ)|2 + |σ̂1(2ξ)|2

)
dξ

+
1

N2

∫
|ξ|> 1

2π

| f̂N(ξ/t)|2
(
|σ̂1(ξ)|2 + |σ̂1(2ξ)|2

)
dξ def

= I + II.

For I observe that J0(2π·) has no root in the range |ξ| ≤ 1
2π . We immediately get

|I| &
1

N2

∫
|ξ|≤ 1

2π

| f̂N(ξ/t)|2dξ ≥
t2

N2

∫
|ξ|≤ 1

2πt

| f̂N(ξ)|2dξ.

For II we use Lemma 3.1 to write

|II| &
1

N2

∫
|ξ|> 1

2π

| f̂N(ξ/t)|2
1
|ξ|

dξ &
t

N2

∫
[− 1

2 ,
1
2 ]2\{ |ξ|> 1

2πt }

| f̂N(ξ)|2dξ.

Combining the estimates and remembering that t ≥ 1 we get

Dt( fN, 2)2 + D2t( fN, 2)2 &
t

N2

∫
[− 1

2 ,
1
2 ]2
| f̂N(ξ)|2dξ & t
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where we have used that

| f̂N(ξ)|2 =

∣∣∣∣∣sin(πξ1)
πξ1

sin(πξ2)
πξ2

N−1∑
j,k=0

z jke2πi( jξ1+kξ2)
∣∣∣∣∣2 & ∣∣∣∣∣ N−1∑

j,k=0

z jke2πi( jξ1+kξ2)
∣∣∣∣∣2(3.1)

for ξ ∈ [− 1
2 ,

1
2 ]2. This in turn is a consequence of the elementary estimate | sin(πx)| ≥ 2|x|

for |x| ≤ 1
2 . �

Proof of Theorem 1.4. Given t ≥ 1 let N ≥ Bt2 be a positive integer for some numerical
constant B > 0 to be determined later. By corollary 3.1 we have that

Ds( fN, 2) &
√

s,

where s is equal to either t or 2t. Consider the cube Q1
def
= [s,N − s]2. We have∫

[s,N−s]2
|Ds( fN)(x)|2dx = Ds( fN, 2)2

−
1

N2

∫
[−s,N+s]2\[s,N−s]2

| fN ∗ dσs(x)|2dx

& s(1 − 24s2/N) & s,

if B is large enough, say B ≥ 100. Since all the circles with centers in [s,N − s]2 and radius
s are contained in QN this proves Theorem 1.3. �

4. Single radius discrepancy for arcs

Theorem 1.3 solves the problem of finding a full circle with large discrepancy. There
is one element however that is not very satisfactory, namely the fact that we cannot
guarantee that for every radius t ≥ 1 there corresponds a circle of radius exactly t with large
discrepancy. The problem is caused by the roots of σ̂1(ξ) which allow the expression∫

R2
| f̂ (ξ)|2|σ̂t(ξ)|2dξ

to become small. When N ' t we can deal with this problem by essentially throwing away
small neighborhoods of the roots of σ̂1 and showing that we don’t loose much of the L2

mass of the function f̂ .
We begin by analyzing the behavior of σ̂1(|ξ|). By standard estimates we have the

asymptotic expansion

(4.1) σ̂1(ξ) = σ̂1(|ξ|) = 2|ξ|−
1
2 cos

(
2π|ξ| −

π
4

)
+ O(|ξ|−

3
2 ), |ξ| → +∞;

see for example [8]. Observe that the cosine term in the asymptotic formula above vanishes
exactly when

|ξ| = βk
def
=

(k
2

+
3
8

)
, k = 0, 1, 2, . . . .

For a small parameter 0 < w < 1
8 we define the neighborhoods

Aw(βk)
def
= {ξ ∈ R2 : ||ξ| − βk| < w}.
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Observe that our choice of w implies that the Aw’s do not overlap. The following lemma
analyzes the behavior of σ̂1 away from the annuli Aw

Lemma 4.1. For every sufficiently small w > 0 there exists a constant c(w) such that

|σ̂1(|ξ|)|2 &w

 1
|ξ| , |ξ| > c(w), ξ < ∪kAw(βk)
1, |ξ| ≤ c(w), ξ < ∪kAw(γk),

where γ1 < γ2 < . . . < γM are the roots of σ̂1 in {|ξ| < c(w)}.

Proof. By (4.1) there exist constants c1, c2 > 0 such that for |ξ| > c1 we have

|σ̂1(|ξ|)|2 &
1
|ξ|

(∣∣∣cos(2π|ξ| −
π
4

)
∣∣∣2 − c2

|ξ|

)
.

Now the minimum of the cosine term in the region {|ξ| > c1} \ ∪kAw(βk) is obviously
achieved when ||ξ| − βk| = w for some k. If w < 1

4 we have∣∣∣cos(2π|ξ| −
π
4

)
∣∣∣ ≥ 4

∣∣∣|ξ| − βk

∣∣∣ = 4w

We can thus estimate

|σ̂1(|ξ|)|2 &
1
|ξ|

(
16w2

−
c2

|ξ|

)
&w

1
|ξ|
,

whenever |ξ| > c2
8w2

def
= c(w) and ξ < ∪kAw(βk).

Now there are finitely many roots of σ̂1(ξ) in the ball {|ξ| ≤ c(w)} and let us denote them
by γ1 < γ2 < · · · < γM. By compactness we have that |σ̂1(ξ)|2 &w 1 whenever |ξ| ≤ c(w) and
x < ∪kAw(γk). In order to make sure that all the annuli are non-overlapping we have to

take w < min{ 18 ,
1
2 mink(γk+1 − γk), β0 − γM}

def
= w0. �

Lemma 4.1 can be used to obtain a favorable estimate for Dt( f , 2) as follows. Adopting
the notations of Lemma 4.1 and invoking Plancherel’s theorem we write for every w < wo
small enough (remember t ' N)

Dt( fN, 2)2 &
1

N2

∫
{|ξ|<c(w)}\∪kAw(γk)

| f̂N(ξ/t)|2|σ̂1(|ξ|)|2dξ +
1

N2

∫
{c(w)<|ξ|<t)}\∪kAw(βk)

| f̂N(ξ/t)|2|σ̂1(|ξ|)|2dξ

&w
1

N2

∫
{|ξ|<c(w)}\∪kAw(γk)

| f̂N(ξ/t)|2dξ +
1

N2

∫
{c(w)<|ξ|<t)}\∪kAw(βk)

| f̂N(ξ/t)|2
1
|ξ|

dξ.

Setting Ew
def
= (∪kAw(γk)) ∪ (∪kAw(βk)) and combining the previous estimates we have

Dt( fN, 2)2 &w
1

tN2

∫
{|ξ|<t}\Ew

| f̂N(ξ/t)|2dξ =
t

N2

∫
B(0,1)\ 1

t Ew

| f̂N(ξ)|2dξ.(4.2)

The following Poincaré-type inequality will allow us to show that the L2 norm of f̂N on
B(0, 1) \ 1

t Ew is comparable to the the full L2 norm of f̂N.
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Proposition 4.1. For any positive integer d ≥ 1 let B = B(0,R) ⊂ Rd be a Euclidean ball
in the d-dimensional Euclidean space, centered at the origin, and g ∈ C1(B). Suppose that
0 < β1 < β2 < · · · < βN < R. We set β0

def
= 0 and βN+1

def
= R and

β
def
= min

1≤n≤N+1
(βn − βn−1).

For k = 1, 2, . . . ,N, we set

Aw(βk)
def
= {ξ ∈ R2 : ||ξ| − βk| < w}.

Then for 0 < w < β/3 we have that∫
B
|g(x)|2 .

∫
B\(∪N

n=1Aw(βn))
|g(x)|2 + w2

∫
B
|∇g(x)|2.

Proof. We first focus on a single annulus As(βn) for some 1 ≤ n ≤ N and some real parameter
s in the interval [w, 2w). For βn − s < r ≤ βn + s and u ∈ Sd−1 we have that

g(ru) = g((βn − s)u) +

∫ r

βn−s
∂t(g(tu))dt.

Using the simple inequality 1
2 (a + b)2

≤ a2 + b2 for a, b ∈ R, and the Cauchy-Schwartz
inequality we conclude that

|g(ru)|2 . |g((βn − s)u)|2 + 2s
∫ βn+s

βn−s
|∂t(g(tu))|2dt.

Multiplying by rd−1 and integrating for r ∈ [βn − s, βn + s) and u ∈ Sd−1, we get∫
As(βn)

|g(x)|2dx .
∫ βn+s

βn−s
rd−1dr

∫
Sd−1
|g((βn − s)u)|2dσ(d−1)

1 (u)

+ 2s
∫

Sd−1

( ∫ βn+s

βn−s

( ∫ βn+s

βn−s
|∂t(g(tu))|2dt

)
rd−1dr

)
dσ(d−1)

1 (u).

Now observe that for w < s ≤ 2w and r, t ∈ [βn − s, βn + s), we have that r ' t ' βn. Hence,∫
As(βn)

|g(x)|2dx . sβd−1
n

∫
S1
|g((βn − s)u)|2du + s2

∫
As(βn)

|∇g(x)|2dx.

Integrating the left hand side for s ∈ [w, 2w) we see that∫ 2w

w

∫
As(βn)

|g(x)|2dxds & w
∫

Aw(βn)
|g(x)|2dx.

On the other hand

βd−1
n

∫ 2w

w

∫
S1
|g((βn − s)u)|2sduds . w

∫
B(0,βn−w)\ B(0,βn−2w)

|g(x)|2dx
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≤ w
∫

B(0,βn−w)\ B(0,βn−1+w)
|g(x)|2dx,

since w < β/3. Finally we readily see that∫ 2w

w
s2

∫
As(βn)

|∇g(x)|2dxds . w3
∫

A2w(βn)
|∇g(x)|2dx.

Putting these estimates together get

w
∫

Aw(βn)
|g(x)|2dx . w

∫
B(0,βn−w)\ B(0,βn−1+w)

|g(x)|2dx + w3
∫

A2w(βn)
|∇g(x)|2dx.

Observe that we have

∪
N
n=1B(0, βn − w) \ B(0, βn−1 + w) ⊆ B \

(
∪

N
n=1 Aw(βn)

)
and the unions on both sides of the inclusion above are disjoint. Summing in n we thus
get ∫

∪N
n=1Aw(βn)

|g(x)|2dx .
∫

B\∪N
n=1Aw(βn)

|g(x)|2dx + w2
∫
∪N

n=1A2w(βn)
|∇g(x)|2dx.

Adding the term
∫

B\∪N
n=1Aw(βn)

|g(x)|2dx in both sides of the inequality completes the proof. �

Now Proposition 4.1 and estimate (4.2) will allow us to conclude the proof of Theorem
1.4:

Proof of Theorem 1.4. Estimate (4.2) and Proposition 4.1 imply that

D2
t ( fN, 2) =

1
t

∫
B(0,1)\ 1

t Ew

| f̂N(ξ)|2dξ &w
1
t

( ∫
B(0,1)
| f̂N(ξ)|2dξ −

w2

t2

∫
B(0,1)
|∇ f̂N(ξ)|2dξ

)
.(4.3)

Using the bounds ∫
B(0,1)
| f̂N(ξ)|2dξ &

∫
[− 1

2 ,
1
2 ]2

∣∣∣∣∣ N−1∑
j,k=0

z jke2πi( jξ1+kξ2)
∣∣∣∣∣2dξ ≥ N2,

and ∫
B(0,1)
|∇ f̂N(ξ)|2dξ ≤

∫
R2
|x|2| fN(x)|2dx . N4

in estimate (4.3) we get

D2
t ( fN, 2) &

1
t

(
N2
−

w2

t2 N4
)
' t(1 − cw2),

for some constant c > 0. If w is sufficiently small we conclude that Dt( fN, 2) &w
√

t as we
wanted to prove. �
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Remark 4.1. The calculations in this section show that

Dt( fN, 2) &
√

t,

for N ' t. This alone is not enough to conclude the existence of a full circle with large
discrepancy ∼

√
t. Indeed, the argument used in the proof of Theorem 1.3 requires the

validity of the previous estimate for N & t2 while, here, we only have it for N ' t.

5. Discrepancy with respect to general sets

In this section we study the discrepancy of a coloring f of the plane with respect to more
general families of sets. To keep the exposition relatively simple let us assume that S is
a simple, closed, piecewise C1 curve in the Euclidean plane and let K denote its interior.
Let dσS denote the arc-length measure on S. In the previous sections we have studied
the discrepancy of f with respect to the family of all dilations and translations of the unit
circle. Here, the relevant families are

{x + rτK : x ∈ R2, r > 0, τ ∈ SO(2)},

and
{x + rτS : x ∈ R2, r > 0, τ ∈ SO(2)}.

Note that we introduce rotations which was superfluous in the case of the circle. Here
however it is absolutely essential. Indeed, consider the standard chessboard-like alter-
nating coloring (i.e. adjacent squares have different colors) and let K be the unit square
with its sides parallel to the coordinate axes. Obviously the discrepancy of this coloring
with respect to the dilations and translations of K (or ∂K) is ∼ 1 so the problem is trivial.
Another option would be to place certain assumptions on the curvature of ∂K but we will
not pursue this here.

For x ∈ R2, r > 0 and τ ∈ SO(2) we define

DK( fN, x, τ, r) def
= ( f ∗ χrτK)(x)

and
DS( fN, x, τ, r) def

= ( f ∗ dσrτS)(x).

5.1. Average estimates for the Fourier transform. We will obtain lower bounds on the
discrepancies described above by studying their L2 averages. The most important ingre-
dient of this approach is the following lemma describing the average asymptotic behavior
of the Fourier transform of dσS and χK. These estimates are essentially contained in the
proof of [4, Theorem 3, Chapter 6].

Lemma 5.1. Let S be a simple, closed, piecewise C1 curve in the Euclidean plane and denote by K
its interior so that S = ∂K. There exist numerical constants Ao > 1 and Ro > 0 such that, if R > Ro
and A > Ao, then ∫

R≤|ξ|≤AR
|χ̂K(ξ)|2dξ &A

|S|
R
,
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and ∫
R≤|ξ|≤AR

|d̂σS(ξ)|2dξ &A |S|R.

Here |S| denotes the arc-length of S.

Proof. We follow Montgomery from [4, Theorem 3, Chapter 6]. For r > 0 we set

g(r) =

∫
S1
|χ̂K(rξ′)|2dσ1(ξ′).

Under our assumptions on K, Montgomery proves the asymptotic estimate∫ R

0
g(r)r5dr ' |S|R3,

as R→ +∞. This means that there exist numerical constants Ro, c1, c2 > 0 such that

c1|S|R3
≤

∫ R

0
g(r)r5dr ≤ c2|S|R3,

whenever R > Ro. For A > 1 and R > Ro we thus have∫ AR

R
g(r)r5dr ≥ |S|R3(A3c1 − c2) & |S|R3

if A > A0 where Ao > 1 is a numerical constant. We conclude that∫
R≤|ξ|≤AR

|χ̂K(ξ)|2dξ =

∫ AR

R
g(r)rdr &A |S|/R,

whenever R > Ro and A > Ao. This proves the first estimate of the lemma.
For the second we modify the proof of [4, Theorem 3, Chapter 6]. With h(x) = e−πR2

|x|2

Montgomery shows that ‖χK ∗ ∇
2h‖22 ' |S|/R as R → +∞. On the other hand, by Green’s

theorem we have

χK ∗ ∇
2h =

∫
S

∂h
∂n

(x − y)dσS(y).

Combining these two facts and using Plancherel’s theorem we get

|S|
R
'

∫
R2

∣∣∣ ∂̂h
∂n

(ξ)
∣∣∣2|d̂σS(ξ)|2dξ =

∫
R2
|ξ · n|2|ĥ(ξ)|2|d̂σS(ξ)|2dξ

=

∫ +∞

0
|ĥ(r)|2

( ∫
S1
|ξ′ · n|2|d̂σS(rξ′)|2dσ(ξ′)

)
r3dr,

where ĥ(r) = ĥ(|ξ|) = R−2e−πR−2r2 . Let us call

y(r) def
=

∫
S1
|ξ′ · n|2|d̂σS(rξ′)|2dσ(ξ′) ≤

∫
S1
|d̂σS(rξ′)|2dσ(ξ′).(5.1)
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We have ∫ +∞

0
y(r)e−2πr2/R2

r3dr ' |S|R3.

As in Montgomery [4], we use the Hardy-Littlewood Tauberian theorem [1, Theorem 108]
to conclude that ∫ R

0
y(r)r3dr ' |S|R3,

as R→ +∞. Arguing as in the first part of the proof we conclude that there exist numerical
constants Ro and Ao > 1 such that ∫ AR

R
y(r)r3dr & |S|R3,

whenever R > Ro and A > Ao. By (5.1) we conclude that∫
R≤|ξ|≤AR

|d̂σS(ξ)|2dξ ≥
∫ AR

R
y(r)rdr &A |S|R,

as we wanted to prove. �

5.2. Lower bounds for discrepancy with respect to general sets. Using the average esti-
mates for the Fourier transform of χK and dσS proved in the previous paragraph we can
now show the desired lower bounds for the (average) discrepancy.

Theorem 5.1. Let S be a simple, closed, piecewise C1 curve and denote by K its interior.
(i) For every positive integer N there exists a x ∈ QN, a dilation r ' N and a rotation
τ ∈ SO(2) such that

DK( fN, x, r, τ) &K

√

N,
where the implied constant depends only on K.

(ii) For every positive integer N there exists a x ∈ QN, a dilation r ' N and a rotation
τ ∈ SO(2) such that

DS( fN, x, r, τ) &K

√

N,
where the implied constant depends only on S = ∂K.

Remark 5.1. As in Theorem 1.4 we cannot guarantee that the sets x + rτK, x + rτS of the
previous theorem are fully contained in QN. Thus, Theorem 5.1 only implies the existence
of a segment of K or S which has large discrepancy with respect the coloring of the whole
plane f .

In order to prove Theorem 5.1 we will consider the average discrepancy

DK( fN, 2)2 def
=

1
N3

∫
SO(2)

∫ βN

aN

( ∫
R2

DrτK( fN, x)2dx
)

drdτ,
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where 0 < a < β will be appropriate numerical constants. Similarly define

DS( fN, 2)2 def
=

1
N3

∫
SO(2)

∫ βN

aN

( ∫
R2

DrτS( fN, x)2dx
)

drdτ.

The factor 1/N3 is there to almost normalize the measure while dτ is the normalized Haar
measure on SO(2).

Proof. The proofs of (i) and (ii) are essentially identical so we will just prove (ii). Using
Plancherel’s theorem we have

DS( fN, 2)2 =
1

N3

∫
R2

∣∣∣ f̂N(ξ)
∣∣∣2( ∫ βN

aN
r2

∫
SO(2)

∣∣∣d̂σS(rτ−1ξ)
∣∣∣2dτdr

)
dξ

=
1

N3

∫
R2

∣∣∣ f̂N(ξ)
∣∣∣2( ∫ β|ξ|N

a|ξ|N

r2

|ξ|3

∫
SO(2)

∣∣∣d̂σS(rτeξ)
∣∣∣2dτdr

)
dξ

&
1

N2

∫
|ξ|<1

∣∣∣ f̂N(ξ)
∣∣∣2 1
|ξ|2

( ∫ β|ξ|N

a|ξ|N

∫
SO(2)

∣∣∣d̂σS(rτeξ)
∣∣∣2rdτdr

)
dξ

=
1

N2

∫
|ξ|<1

∣∣∣ f̂N(ξ)
∣∣∣2 1
|ξ|2

∫
{a|ξ|N<|y|<β|ξ|N}

∣∣∣d̂σS(y)
∣∣∣2dy dξ

=
1

N2

∫
{a|ξ|N<M}

∣∣∣ f̂N(ξ)
∣∣∣2 1
|ξ|2

( ∫
{a|ξ|N<|y|<β|ξ|N}

∣∣∣d̂σS(y)
∣∣∣2 )

dξ

+
1

N2

∫
{M<a|ξ|N<aN}

∣∣∣ f̂N(ξ)
∣∣∣2 1
|ξ|2

∫
{a|ξ|N<|y|<β|ξ|N}

∣∣∣d̂σS(y)
∣∣∣2dy dξ def

= I + II.

Here we have set eξ = ξ
|ξ| . Using Lemma 5.1 we get for M > Ro and β/a > Ao, that

II &
1

N2

∫
{M<a|ξ|N<aN}

∣∣∣ f̂N(ξ)
∣∣∣2 N|S|
|ξ|

dξ ≥
|S|
N

∫
{

M
aN<|ξ|<1}

∣∣∣ f̂N(ξ)
∣∣∣2dξ.

Now for small ε > 0 we write

I ≥
∫
{
ε
N<|ξ|<

M
aN }

∣∣∣ f̂N(ξ)
∣∣∣2 ∫

{a|ξ|N<|y|<β|ξ|N}

∣∣∣d̂σS(y)
∣∣∣2dy dξ

&S

∫
{
ε
N<|ξ|<

M
aN }

∣∣∣ f̂N(ξ)
∣∣∣2dξ.

The last estimate is justified since the region {a|ξ|N < |y| < β|ξ|N} is an annulus inside
B(0,Mβ/a), of width at least (β−a)ε, and d̂σS(y) does not vanish identically on any annulus.
Adding the estimates we conclude

DS( fN, 2)2 &S
1
N

∫
{
ε
N<|ξ|<1}

∣∣∣ f̂N(ξ)
∣∣∣2dξ ≥

1
N

( ∫
[− 1

2 ,
1
2 ]2

∣∣∣ f̂N(ξ)
∣∣∣2dξ −

∫
|ξ|< ε

N

∣∣∣ f̂N(ξ)
∣∣∣2dξ

)
.
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Now using the trivial bound ‖ f̂N‖
2
L∞(R2)

≤ ‖ fN‖
2
L1(R2)

= N4 and (3.1) we get

DS( fN, 2)2 &
1
N

(N2
−N4 ε

2

N2 ) & N,

if ε is small enough. �

Remark 5.2. By using the same ideas as in the proof of Theorem 1.3 we can show a stronger
result in the special case of the Euclidean ball. In particular, we have that for every
checkerboard coloring f of the whole plane and every t ≥ 1, there is a x ∈ R2 such that

either
∣∣∣∣∣ ∫

B(x,t)
f (y)dy

∣∣∣∣∣ & √t or
∣∣∣∣∣ ∫

B(x,2t)
f (y)dy

∣∣∣∣∣ & √2t.

Remark 5.3. The only limitation in the choice of the set K and the curve S come from Lemma
5.1. Going back to Montgomery’s proof in [4] one see that Lemma 5.1 remains valid if
K is for example a multiply connected set and S is replaced by ∂K. Furthermore, the C1

condition of the boundary can be replaced by the weaker condition that the limit

lim
δ→0

|{x ∈ R2 : dist(x,S) < δ}|
δ

,

exists and is finite.
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