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Abstract. In relation to the Erdős simi-
larity problem (show that for any infinite
set A of real numbers there exists a set
of positive Lebesgue measure which con-
tains no affine copy of A) we give some
new examples of infinite sets which are
not universal in measure, i.e. they sat-
isfy the above conjecture. These are sym-
metric Cantor sets C which can be quite
thin: the length of the n-th generation
intervals defining the Cantor set is de-
creasing almost doubly exponentially. Fur-
ther, we achieve to construct a set, not
just of positive measure, but of full mea-
sure not containing any affine copy of C.
Our method is probabilistic.
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1. Introduction

1.1. The Erdős similarity problem. We are
interested in is the so-called Erdős similarity
problem: given a set A ⊆ R when can we find a
Lebesgue measurable set E of positive measure
which contains no affine copy, x + tA, of the set
A (where x, t ∈ R, t , 0).

Definition 1.1. Let us call a set A ⊆ R univer-
sal in measure if every Lebesgue measurable
set E ⊆ R of positivemeasure contains an affine
copy of A.

Obviously any unbounded set A can be
avoided by the interval [0, 1], so we assume
from now on that A is bounded and, to simplify
matters more, that A ⊆ [0, 1].

It is easy to see, looking near a point of den-
sity of a set E of positive measure, that every
finite set A is universal in measure. Erdős has
conjectured that no infinite set is universal in
measure. This is still open apart from spe-
cial cases [Eig85, Fal84, Kol97, Bou87, GLW22,
HL98, Kom83]. See also the survey [Sve00]
and the related papers [CLP22, DPZ21, FP18,
Mag11, Mát17, Shm17, Yav21, BKM22, KP22,
BGK+22].
To prove that there are no infinite universal

sets it would suffice to prove that no countable
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set of the form

A = {a1 > a2 > a3 > · · ·}, with an → 0,

is universal. This is known under several con-
ditions on an which prevent an from converging
too rapidly. For instance [Eig85, Fal84] it is
known that A is not universal if

(1.1) an+1

an
→ 1.

In contrast, it is still unknown if the sequence
2−n or any other exponentially decreasing se-
quence is universal. In almost all the existing
work on this problem the rapid decay of the se-
quence an presents a problem1 and exponential
decay is the borderline case that nobody seems
to know how to handle.
In [Kol97] the following result was proved,

which easily implies non-universality under
condition (1.1), but is somewhat more flexible
especially when A does not have the structure
of a convergent sequence.

Theorem 1.1 ([Kol97]). Let A ⊆ R be an infi-
nite set which contains, for arbitrarily large n,
a subset {a1, . . . , an} with a1 > · · · > an > 0 and

(1.2) − log δn = o(n),

1The only exception we know is Theorem 2 in [Kol97],
where one passes to a fast decaying subsequence in or-
der to exploit the pseudo-random properties of its dilates
modulo a fixed length and thus construct a set E of posi-
tive measure which does not contain x+ tA for almost all
t ∈ R.
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where2

(1.3) δn = min
i=1,...,n−1

ai − ai+1

a1 − an
.

Then A is not universal in measure.

We can see now that any set A of positive
Lebesgue measure is not universal. Indeed for
any n we can find an affine image of {1, 2, . . . ,n}
in A, since every finite set is universal, as ex-
plained above. Now we apply Theorem 1.1 for
this set to obtain that A is not universal.

1.2. Uncountable and Cantor sets. It
makes sense to ask the Erdős similarity
problem under the additional assumption that
the set A (all of whose affine copies are to be
avoided by a set of positive measure) is not
just infinite but even uncountable. No one
really knows of a way to take advantage of
this cardinality to show non-universality. We
will however be able to say more about an
important class of uncountable sets, Cantor
sets.
Let

C =
∞⋂

n=0

Cn ⊆ [0, 1]

be a symmetric Cantor set defined as follows.
We have C0 = [0, 1]. The sequence Cn will be
a decreasing sequence and each Cn is a finite
union of 2n disjoint closed intervals of equal

2In [Kol97] the denominator in (1.3) is a1, not a1 −

an, but since we can translate A without changing the
problem, these are equivalent formulations. See also
[Chl15].
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length `n. From Cn−1 we derive Cn by visit-
ing each interval of Cn−1 and removing a mid-
dle open interval3 of length dn > `n. We write
rn =

`n
2`n+dn

= `n
`n−1

. It follows that `n = r1r2 · · · rn.
Denote by Ln the set of left endpoints of the

intervals in Cn and by Rn the set of right end-
points. We have |Ln| = |Rn| = 2n and both Ln and
Rn are subsets of C. We also have Ln ⊆ Ln+1 and
Rn ⊆ Rn+1.

In [Bou87] it is proved that for any infinite
sets S0,S1,S2 ⊆ R the set S0+S1+S2 is not univer-
sal. Using this result we can prove that sym-
metric Cantor sets are not universal. Indeed
we have L0 = {0} and, for n ≥ 0,

Ln+1 = Ln + {0, dn+1 + `n+1}.

If we denote by L =
⋃
∞

n=0 Ln ⊆ C the set of all
left interval endpoints in all stages of the con-
struction, we have

L = {0, d1 + `1} + {0, d2 + `2} + {0, d3 + `3} + · · ·

= S0 + S1 + S2,

where
S j =

⊕
i≡ j mod 3

{0, di + `i}, j = 0, 1, 2.

Since the sets S j are infinite, we obtain by the
mentioned result of [Bou87] that L, and there-
fore C, is not universal4.

Let us now show how using Theorem 1.1
we can immediately prove the following, which

3The case when one allows dn ≤ `n leads to “fatter”
sets which can be handled with the methods in [GLW22]
so we decided to exclude them from discussion in this
paper to avoid unnecessary complications.

4Pointed out to us by the referee.
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shows how the (nearly) double exponential de-
cay of `n comes into the picture with our
method. This happens because the structure
of a Cantor set, even if one includes only the
endpoints

⋃
n(Ln∪Rn), is much richer than that

of a sequence.
Theorem 1.2. If C is a symmetric Cantor set
with `n < dn and there is a subsequecnce nk ∈N
such that
(1.4) − log `nk = o(2nk)

then C is not universal.
Remark 1.1. Let us make clear here that The-
orem 1.2 is suboptimal, compared to what one
can prove as a corollary of Bourgain’s result in
[Bou87], as it does not work for all symmetric
Cantor sets but only for those that are thinning
out sufficiently slowly according to (1.4). The
proof however is rather simple, following eas-
ily from Theorem 1.1 and it demonstrates the
fact that, for our method to work, one gener-
ally needs bounds on the decay. Additionally,
the use of Bourgain’s result is fragile, as it de-
pends on the algebraic properties of the set. In-
deed, if one relaxes the definition of symmetric
Cantor sets to allow the removed intervals to
move a little bit to the right or left, differently
in each interval, the additive structure evapo-
rates and Bourgain’s theorem does not apply,
but it’s easy to see that the proof of 1.2 goes
through.

Proof. The minimum distance between two
points of Ln is `n + dn > `n and |Ln| = 2n. (See
Fig. 1.)
If we have arbitrarily large nk such that (1.4)

holds then, applying Theorem 1.1 to the set Lnk ,
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`n `n `n `n

dn dn−1

`n−1 `n−1

dn

Figure 1. The n-th generation Cn

we obtain that
⋃

k Lnk , hence also its superset C,
is not universal. �

1.3. Sets of full measure. If the set A is
countable and the set E has full measure in
[0, 1] then it is easy to see that we can find an
affine copy of A in E (even a translation copy of
t0A where diam (t0A) < 1). So it does not make
sense, in general, to demand that the avoiding
set E has measure 1 in [0, 1] instead of mea-
sure arbitrarily close to 1. This is not true if A
is uncountable. It is legitimate to try to avoid
all affine copies of an uncountable set A with a
set E ⊆ [0, 1] of measure 1.

In [GLW22] the notion of universality ismod-
ified to account for topological “size”. There,
a set A ⊆ R is called topologically universal
if one can find an affine copy of A in any set
E ⊆ R which is a dense Gδ set. (They work in
higher dimension as well.) By Baire’s theorem
all countable sets A are topologically universal,
so the interest shifts necessarily to uncount-
able sets.
They study Cantor sets (more generally than

we do: a Cantor set is a totally disconnected,
perfect compact set in Euclidean space) and
their results are about Cantor sets of positive
Newhouse thickness. We refer to [GLW22, §2]
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for the precise definition of Newhouse thick-
ness. For the class of symmetric Cantor sets
that this paper is about the Newhouse thick-
ness is the quantity

(1.5) inf
n=1,2,...

`n

dn
.

If we take, for example, the usual ternary Can-
tor set, its Newhouse thickness is 1. Having
positive Newhouse thickness roughly means
that, at each stage, we do not throw away (from
each interval) much more than we keep. Sym-
metric Cantor sets of positive Newhouse thick-
ness have their n-th generation intervals `n de-
cay no faster than exponentially.
Theorem 1.5 of [GLW22] shows that there ex-

ists a dense Gδ set which is also a set of full
Lebesgue measure (i.e. with null complement)
which does not contain any Cantor set of posi-
tive Newhouse thickness. This unexpected ex-
treme non-universality is due to the so-called
Newhouse gap lemma, which says that two
Cantor sets, such that none of the two is con-
tained in a “gap” of the other, always intersect
if the product of their Newhouse thickness is at
least 1. (See [GLW22, Lemma 3.6] and works
cited therein for more.)
We cannot match in this paper the simul-

taneous avoidance character of the result in
[GLW22], but we manage to go down into the
zero-Newhouse-thickness territory. Our main
result is the following. Let us stress here
that the avoiding set is of full measure, as in
[GLW22] and unlike all other cited work on the
Erdős similarity problem.
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Theorem 1.3. For any symmetric Cantor set C
with
(1.6) − log `n = o(2n1−ε

), for some ε > 0,
there exists a set E ⊆ [0, 1] of Lebesgue measure
1 such that
(1.7) (x + tC) * E

for all x, t ∈ R, t , 0.

We prove this result in §2.
In Theorem 1.3 we are not constructing a

set of full measure that avoids all Cantor sets
in any wide class, such as those of positive
Newhouse thickness. But we are constructing,
given a very thin Cantor set C, a set of full mea-
sure avoiding C.

Example. Let us take the Cantor set C with
rn =

`n
`n−1
= 1

n , a set with zero Newhouse thick-
ness. Then

`n = r1 · r2 · · · rn

so

− log `n = − log 1− log
1
2
−· · ·− log

1
n
= O(n log n),

so condition (1.6) is valid for this set and, there-
fore, by Theorem 1.3, there exists a set E ⊆ [0, 1]
of measure 1 containing no affine copy of C.

Remark 1.2. It is easily seen in the proof of
Theorem 1.3 that one does not need to impose
such a rigid structure on the Cantor set C.
For example, it is not necessary that the in-
terval we throw away from each interval of Cn
is exactly in the middle of the interval. Many
other relaxations of the assumptions are possi-
ble with the same method.
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2. Construction of a set of full measure

In this section we prove Theorem 1.3. The
proof is probabilistic, a modification of that
used in Theorem 3 of [Kol97].
We will construct the set Ec = (−∞, 0) ∪ F ∪

(1,+∞) where F ⊆ [0, 1] is a Lebesgue mea-
surable set of measure 0, and F will be such
that whenever x + tC ⊆ [0, 1] we have that
F ∩ (x + tC) , ∅.
Our first remark is that it is enough to con-

struct such a set F which achieves (2.1) below
for all a ≤ x ≤ b, A ≤ t ≤ B, where a, b,A,B
are any fixed numbers (with A,B , 0 and of the
same sign). Since we can exhaust the (x, t) pa-
rameter space with a countable union of such
[a, b] × [A,B] rectangles we can clearly take the
union of all the sets F corresponding to these
rectangles and still have a set of measure 0.
So we assume a, b,A,B are fixed from now on.

We shall construct a compact null set F ⊆ [0, 1]
such that for all x ∈ [a, b] and t ∈ [A,B], for
which x + tC ⊆ [0, 1], we have

(2.1) (x + tC) ∩ F , ∅.

Our set F will be the intersection of a de-
creasing sequence of compact sets Fn ⊆ [0, 1],
n = 0, 1, 2, . . ., such that m(Fn) → 0, which im-
plies m(F) = 0. We initially take F0 = [0, 1].
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Fn−1 Fn−1 Fn−1

Fn Fn FnFn

Figure 2. Two successive sets Fn.
The set Fn is a random subset of
Fn−1.

In what follows we always assume for a pair
of parameters (x, t) that it is such that x + tC ⊆
[0, 1].
To ensure (x + tC) ∩ F , ∅ it is therefore

enough, by the finite intesection property of
compact sets, to ensure that (x + tC) ∩ Fn , ∅
for all n. And for this it is enough to ensure
that the set

x + t∂Cφ(n) = x + t(Lφ(n) ∪ Rφ(n))

intersects Fn, where φ : N → N is a strictly
increasing function, that will be specified later.
Each set Fn that we construct will be a finite

union of disjoint closed intervals in [0, 1]. We
call these the maximal intervals of Fn.

To carry out our construction we will pre-
serve the following property from Fn−1 to Fn.

Property A: For all (x, t) ∈ [a, b]×
[A,B] such that x + tC ⊆ [0, 1] the
set Fn contains both endpoints of
an interval of x + tCφ(n) in one of
its maximal intervals.
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interval of Fn

interval of x + tCφ(n)

Figure 3. Some interval of x +
tCφ(n) is contained in some inter-
val of Fn.

Each set Fn will consist of a finite union
of non-overlapping (but possibly sharing end-
points) closed intervals of length fn each. We
derive Fn from Fn−1 by subdividing Fn−1 into non-
overlapping intervals of length fn and keeping
(into Fn) each interval with probability qn → 0,
(with qn < 1/4 for all n) independently.

fn−1

fn

Figure 4. Some interval of Fn−1,
of length fn−1 giving rise to a ran-
dom collection of intervals that
make up Fn, each of them of
length fn.

Assuming Fn−1 given and satisfying Property
A we will prove that with positive probabil-
ity the set Fn will also satisfy Property A and
its measure m(Fn) will be at most half that of
m(Fn−1).
By the randomized construction of Fn from

Fn−1 we deduce Em(Fn) = qnm(Fn−1) and by



SETS OF FULL MEASURE AVOIDING CANTOR SETS13

Markov’s inequality we have

P
[
m(Fn) > 2qnm(Fn−1)

]
<

1
2
.

So with probability at least 1/2 we have

m(Fn) ≤ (2qn)m(Fn−1) ≤
1
2

m(Fn−1).

Thus it suffices to show that Property A
holds for Fn with probability tending to 1 with
n. This ensures that there exists a decreasing
sequence of sets Fn satisfying Property A.

We define fn = fn−1/k, where k is the smallest
integer so that fn ≤ 0.9A`φ(n) (since we want fn
to divide fn−1). Notice that this implies
(2.2) 0.45A`φ(n) ≤ fn ≤ 0.9A`φ(n).

With this choice we have made sure that each
point of x + t∂Cφ(n) belongs to a different fn-
length interval in the subdivision of Fn−1 and,
therefore, that the events

Ep : x + tp ∈ Fn,

where p ∈ ∂Cφ(n), are independent for each fixed
choice of the parameters x, t.

The crucial observation here is that in order
to make sure that Property A holds for all (x, t)
it is sufficient to check for only a finite set of
pairs (x, t). The parameter space (x, t) is parti-
tioned by the straight lines
(2.3) x + ta = b,

where a ∈ ∂Cφ(n) and b is an endpoint of any fn-
length interval in Fn−1. The number Sn of such
straight lines is therefore

Sn ≤
∣∣∣∂Cφ(n)

∣∣∣ m(Fn−1) f −1
n ≤ 2φ(n)m(Fn−1) f −1

n ,
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and these lines partition the (x, t) space into
O(S2

n) open, connected (since they are convex)
regions. It is clear that it is enough to select
one (x, t) point in every such region.
Indeed, suppose (x1, t1) and (x2, t2) are two

points in one such region R and consider the
straight line segment connecting them, which
lies completely in this region R, since R is con-
vex. Then we can move continuously from
(x1, t1) to (x2, t2) along this straight line segment
without ever leaving the region R. As (x, t) car-
ries out this motion the points of x + t∂Cφ(n)
never cross a subdivision point in Fn−1, as, if
that happened, the point (x, t) would be on one
of the straight lines (2.3). Therefore, for each
p ∈ ∂Cφ(n) the two events x1 + t1p ∈ Fn and
x2 + t2p ∈ Fn are either both true or both false.

Remark about the non-interior points
(x, t): The case where the point (x, t) is actually
on a dividing line causes no problems as we can
always add to the final set F that we construct
the countable set of all dividing points, i.e. the
integer multiples of all numbers fn, for all n,
thus ensuring that for any such (x, t) the corre-
sponding set x + tC intersects F.

If Property A holds for all these finitely many
points (one per region of the subdivision) then
it holds for all pairs (x, t). Thus the number of
(x, t) points that we have to check is

O(S2
n) = O(22φ(n))m(Fn−1)2 f −2

n = O(22φ(n)`−2
φ(n)).

For each of these points (x, t) the probability
that Fn does not contain both endpoints of some
interval of x+ tCφ(n) in one of its maximal inter-
vals is, because of independence,

≤ (1 − qK
n )pn(x,t),
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where pn(x, t) is the number of intervals of x +
tCφ(n) which are contained in some maximal in-
terval of Fn−1 and the positive integer K is the
maximum number of fn-length intervals that
are required to cover an interval of x + tCφ(n).
Since these intervals have maximum length
(as t varies in [A,B]) equal to B`φ(n) and since
fn ≥ 0.45A`φ(n), by (2.2), it follows that K ≤
3B/A.

We now observe that pn(x, t) ≥ 2φ(n)−φ(n−1), as
there are φ(n) − φ(n − 1) generations of the
Cantor set between x + tCφ(n−1) and x + tCφ(n)
and each generation doubles the number of in-
tervals and there is at least one interval of
x+ tCφ(n−1) contained in some maximal interval
of Fn−1 (by Property A, which we assume true
for n − 1).

φ(n) − φ(n − 1) generations

x + tCφ(n−1) I

I

I
x + tCφ(n)x + tCφ(n)

Figure 5. If some interval of x +
tCφ(n−1) is contained in some inter-
val I of Fn−1 then at least 2φ(n)−φ(n−1)

intervals of x+tCφ(n) are contained
in I.

The total bad probability then, that is the
probability that Fn (constructed at random
from Fn−1 which is considered fixed and satis-
fying Property A) will fail to satisfy Property
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A, is at most

(1 − qK
n )2φ(n)−φ(n−1)

22φ(n)`−2
φ(n).

We would like this quantity to go to 0 with n.
Taking logarithms we have that the logarithm
of the above is
log(1 − qK

n ) · 2φ(n)−φ(n−1) +O(φ(n)) +O(− log `φ(n)).

Define now φ(n) =
⌊
n1+η

⌋
for some positive η.

This gives φ(n) − φ(n − 1) ≥ Cnη. It is enough
therefore to have
log(1 − qK

n )2Cnη +O(n1+η) +O(− log `
bn1+ηc

)→ −∞.

Only the first term is negative. As we can take
qn → 0 as slowly as we please it follows that the
above quantity tends to −∞ if we have

− log `
bn1+ηc

= o(2Cnη),

which is true if pick η so that ε = 1
1+η using (1.6).

This concludes the proof of Theorem 1.3.
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