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Abstract. Suppose an is a real, nonnegative
sequence that does not increase exponen-
tially. For any p < 1 we construct a Lebesgue
measurable set E ⊆ R which has measure at
least p in any unit interval and which con-
tains no affine copy {x + tan : n ∈N} of the
given sequence (for any x ∈ R, t > 0). We
generalize this to higher dimensions and also
for some “non-linear” copies of the sequence.
Our method is probabilistic.
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1. Introduction

In Euclidean Ramsey Theory one is interested
in assuming some kind of largeness for sets E in
Euclidean space Rd, or, sometimes in Zd, and con-
cluding that E then contains a “copy” of a pattern.
The most famous such example is perhaps Sze-
meredi’s Theorem [Sze75] which states that any
subset of the integers with positive density contains
aribtrarily long arithmetic progressions. Another
well known example is the theorem of Falconer
and Marstrand [FM86], Furstenberg, Katznelson
and Weiss [FKW90] and Bourgain [Bou86] (see also
[Kol04]) that if the set E ⊆ Rd has positive Lebesgue
density (this means that there are arbitrarily large
cubes where E takes up at least a constant frac-
tion of the measure) then its points implement all
sufficiently large distances (conjecture by Székely
[Szé83]).

Another well known problem, very much related
to the contents of this paper, is the so-called Erdős
similarity problem: A set A ⊆ R is called uni-
versal in measure if whenever E ⊆ R has positive
Lebesgue measure we can find an affine copy of A
contained in E. In other words x + tA ⊆ E for some
x ∈ R, t > 0. It is easy to see that every finite set
A is universal (just look close enough to some point
of density of E, shrink A enough and average the
number of points of the copy of A that belong to E
over translates of A nearby) but it has been con-
jectured [Erd15] (see also [CFG12, p. 183]) that no
infinite set A can be universal in measure. This is
known for many classes of infinite sets but not for
all [Fal84, GLW23, HL98, Kom83, Chl15]. Clearly
it would suffice to prove this for A being a positive
sequence an decreasing to 0 but if an decays fast to 0
(so it is in some sense sparse, hence not that hard
to contain) this is still unknown. On the contrary
this is known when log 1

an
= o(n). This is not known

if an = 2−n, for example.
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In this paper we consider an analogue of the
Erdős similarity problem “in the large”. Let A ⊆ R
be a discrete, unbounded, infinite set in R. Can we
find a “large” measurable set E ⊆ R which does
not contain any affine copy x + tA of A (for any
x ∈ R, t > 0)? Our attention to this problem was
drawn by a recent paper by Bradford, Kohut and
Mooroogen [BKM23] in which the authors prove
that if A is an infinite arithmetic progression then
this is indeed possible: for any p ∈ [0, 1) they con-
struct a Lebesgue measurable set E, with measure
at least p in any interval of length 1, which does not
contain any affine copy of A. This is clearly equiv-
alent to being able to obtain, for any p ∈ [0, 1) a
set E avoiding all infinite arithmetic progressions
and having measure ≥ p in any interval of length 1
whose endpoints are integers. (Indeed, if the set E
has measure at least p in every interval of the form
[n,n + 1], n ∈ Z, then, since for any x the interval
[x, x + 1] is contained in the union of two such unit-
length intervals with integer endpoints, we obtain
that [x, x+1] \E has measure at most 2(1−p). Since
p can be as close to 1 as we want, this implies that
[x, x + 1] \ E has measure as close to 0 as we want.)
From now on we follow this simplification and we
deal only with intervals with integer endpoints (in
any dimension).

We generalize the result of [BKM23] to sequences
of nonnegative numbers A which do not grow too
fast. To state our result, we introduce the following
class of sequences.

Definition 1.1. We say that a real sequence A =
{an, n ∈N} is in the class (A) if

(1) a0 = 0,
(2) an+1 − an ≥ 1, for every n ∈N.
(3) log an = o(n)

Remark. Since the problem we are studying is
translation invariant condition 1.1.(1) in Definition



LARGE SETS WITH NO COPIES OF A SEQUENCE 4

1.1 is unnecessary, but we keep it as it simplifies
the proofs somewhat.

Writing
(1.1) A(t) = |A ∩ [0, t]|
for the counting function of the set A, notice that
the growth condition 1.1.(3) is equivalent to the
limit, as t→ +∞,

(1.2) A(t)
log t

→ +∞.

Our main result is the following.
Theorem 1.1. Consider the sequence A = {an : n ∈
N} which belongs to the class (A). Then, for each 0 ≤
p < 1, there exists a Lebesgue measurable set E ⊆ R
such that

|E ∩ [m,m + 1]| ≥ p, for all m ∈ Z,
but E does not contain any affine copy of A.

As in the case of the Erdős similarity problem de-
scribed above, the sparser the set A is the easier it
should be to be contained in large sets, so it is not
surprising that we had to impose a growth condi-
tion (to belong to the class (A)). It remains an open
question if a similar set E can be constructed when
A grows exponentially or faster.
Question 1. Is there a sequence 0 < an → +∞ and
a number p ∈ [0, 1) such that one can find an affine
copy of A = {an : n ∈N} in any set E ⊆ R which has
measure more than p in any interval of length 1?

Unlike the approach taken in [BKM23] our
method of proof is probabilistic. We construct a
family of random sets and we show that, with high
probability, such a random set will have all the
properties we want. This method turns out to be
extremely flexible, and this allows us to generalize.
Not only can we deal with essentially arbitrary and
unstructured sequencesA but we can also relax the
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sense in which we seek copies of A in the large set
E. Instead of scaling the elements of A and trans-
lating them

x + tan, x ∈ R, t > 0,

we can allow for more general transformations
(1.3) x + ϕ(n, t) · an, x ∈ R, t > 0.

Theorem 1.2. Consider the set A = {an : n ∈ N},
which belongs to the class (A), and let ϕ(n, t) : N ×
(0,+∞)→ (0,+∞) be such that for each n the function
ϕ(n, t) is increasing in t and is such that for all n ∈N
we have
(1.4) C1t ≤ ϕ(n + 1, t)an+1 − ϕ(n, t)an

and
(1.5) ϕ(n, t) ≤ C2t, for all t > 0,

for some C1,C2 > 0. Then, for each 0 ≤ p < 1, there
exists a Lebesgue measurable set E ⊆ R such that
E intersects every interval of unit length in a set of
measure at least p, but E does not contain the set{

x + ϕ(n, t) · an : n ∈N
}

for any choice of x ∈ R, t > 0.

We adopt certain arguments from [Kol97, Sec-
tion 3] where it is proved, on the Erdős similarity
problem, that sequences with a finite limit, say 0,
which are not decaying very fast (e.g. they decay
polynomially or subexponentially but not, for in-
stance, exponentially fast – compare to our growth
condition (1.1.(3))), cannot be universal in measure,
by showing the existence of a randomly constructed
set E ⊆ [0, 1], avoiding all affine copies of the se-
quence.

The measure assumption makes this problem dif-
ferent than other “avoidance" problems, where the
avoiding set is often taken to have zero Lebesgue
measure but to have large Hausdorff dimension or
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Fourier dimension. For example, in [Kel08], a com-
pact subset of R is constructed that has full Haus-
dorff dimension but does not contain any 3-term
arithmetic progression. See also [CLP22, DPZ21,
FP18, Mag11, Mát17, Shm17, Yav21].

We can also prove the following result in higher
dimension. We phrase it as avoiding linear images
of a set in Euclidean space into another Euclidean
space. In this manner we obtain easily some corol-
laries, Theorem 1.1 one of them, and its proof is
rather simpler than that of Theorem 1.1 given in §3.
But it does not extend easily to more complicated
transformations such as those in Theorem 1.2, so
we choose to stay with linear maps.

Theorem 1.3. Let d1, d ≥ 1, b, f > 0, p ∈ [0, 1). Let
also α(R) be a function satisfying α(R)

log R
→ +∞ as

R→ +∞.
Then if A ⊆ Rd1 is a discrete point set such that

(1.6) |A ∩ BR(0)| ≤ C2Rb, (R > 0)

there is a set E ⊆ Rd such that

i.
∣∣∣E ∩ (m + [0, 1]d)

∣∣∣ ≥ p for all m ∈ Zd,
ii. For any linear map T : Rd1 → Rd if for arbi-

trarily large values of R

(1.7) T(A) ∩ BR(0)

contains at least α(R) points with separation
R− f then

(1.8) T(A) is not contained in E.

Proof of Theorem 1.1 using Theorem 1.3. Apply
Theorem 1.3 with d1 = 2, d = 1, b = 1, α(x) = A(x1/2)
(where A(x) is the counting function of A), f = 1
(there is great flexibility in choosing α(x), b, f ) and
the set

P = A × {1} ⊆ R2



LARGE SETS WITH NO COPIES OF A SEQUENCE 7

to obtain a set E ⊆ R satisfying |E ∩ [m,m + 1]| ≥ p
for all m ∈ Z. We see that (1.6) is satisfied. Let now
T : R2 → R be given by the 1 × 2 matrix T = (t, x) so
that

T(P) = x + tA.

For any x ∈ R, t > 0, the set (x+tA)∩[−R,R] contains
at least A(R/t) points of separation t, so, if R is large
enough, it contains α(R) = A(R1/2) points with sep-
aration R−1. It follows that x + tA is not contained
in E. □

Corollary 1.4 (Avoiding linear images of general
sets in high dimension). Let p ∈ [0, 1), d ≥ 1, an ∈ Rd,
for n ∈ N, with log |an| = o(n) and |an − an+1| ≥ 1 for
all n ∈ N. Then there is a set E ⊆ Rd such that for
all m ∈ Zd we have

∣∣∣E ∩ (m + [0, 1]d)
∣∣∣ ≥ p and such

that for all x ∈ Rd and for all non-singular linear
T : Rd → Rd the set {x + Tan : n ∈N} is not contained
in E.

Proof. Take A ⊆ R2d to be the set A × {(1, 0, . . . , 0︸     ︷︷     ︸
d

)},

where A = {an : n ∈N}. Writing A(s) = #(A ∩ Bs(0))

for the counting function of A we have A(R)
log R

→ +∞.

Use Theorem 1.3 with d1 = 2d, b = 1, α(R) = A(R1/2),
f = 1. Let T : Rd → Rd be non-singular, x ∈ Rd, and
define the linear map S : R2d → Rd by

S(u, v) = S(u, v1, v2, . . . , vd) = Tu + v1x.

In other words the d× (2d) matrix of S is (T | x | 0) in
block form. It follows that

S(A) = {Tan + x : n ∈N}.
Since T is non-singular it follows that if R > 0 is suf-
ficiently large the set S(A) ∩ BR(0) contains at least
α(R) points with separation ≥ R−1 so the set E ⊆ Rd

furnished by Theorem 1.3 does not contain S(A), as
we had to prove. □
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Corollary 1.5 (Corollary 6 from [BKM23]). If p ∈
[0, 1) then there exists a set E ⊆ Rd such that∣∣∣E ∩ (m + [0, 1]d)

∣∣∣ ≥ p for all m ∈ Zd and it does not
contain any set of the form x + N∆, with x ∈ Rd,
∆ ∈ Rd \ {0} (an arithmetic progression in Rd).

Proof. We use Corollary 1.4 with the sequence an =
(n, 0, . . . , 0) ∈ Rd, x ∈ Rd and any non-singular d × d
matrix T that maps (1, 0, . . . , 0) to ∆. □

The outline of this note is as follows. In §3 we
give the proof of Theorem 1.1 without using Theo-
rem 1.3, and we indicate how the same proof also
works for Theorem 1.2. In §4 we extend our tech-
nique to cover linear transformations of given se-
quences from one Euclidean space to another and
prove Theorem 1.3 and some corollaries.
Added in revision: The results in [BGK+22],
which came after this paper was submitted, are
very relevant to the results in this paper and con-
tain some improvements.

2. Warm-up and some basic tools: no
translational copies

In this section we introduce the basic probabilis-
tic method by proving the more restricted Theorem
2.1: we can avoid all translations of a given infinite
sequence 0 ≤ an → +∞ with a set which is arbi-
trarily large everywhere. This is considerably eas-
ier than avoiding all affine copies of the sequence,
when scaling the sequence as well as translating it
is allowed. For translations we have only one de-
gree of freedom while for affine copies we have two.
Still, some important ingredients of the method will
be evident in the proof of Theorem 2.1 below. In §3
we will introduce the extra discretization in scaling
space that will be required.
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Theorem 2.1. Let A = {a0 = 0 < a1 < a2 < · · ·} ⊆ R
be a sequence with an → +∞, and p ∈ [0, 1). Then we
can find a Lebesgue measurable set E ⊆ R such that
no translate of A

x +A, x ∈ R,
is contained in E, and such that for each m ∈ Z we
have

|E ∩ [m,m + 1]| ≥ p.

Proof. Let q < 1 be defined by 1− q = 1
2 (1− p) (or q =

1
2 (1 + p)). Passing to a subsequence we can assume
that an+1 − an ≥ 1 for all n. We construct a random
set E by breaking up each unit interval [m,m + 1],
m ∈ Z, into a number Nm of equal intervals and
keeping each of these subintervals with probability
q, independently, into our set E. As |m| increases
the number Nm will also have to increase, so let us
take Nm = max {K, |m|} say, where the large positive
integer K will be determined later.

-4 -3 -2 -1 0 1 2 3 4

Figure 1. How the random set E
looks like

Define now for x ∈ R the random function

ϕ(x) = 1 (x +A ⊆ E) .

Since all points of x + A are in different random
intervals it follows, by independence, that Eϕ(x) =
P [x +A ⊆ E] = 0. Let the set of “bad” x be

B = {x ∈ R : x +A ⊆ E}.
We have

E|B| =
∫
Eϕ(x) dx = 0,

hence |B| is almost surely 0.
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It remains to make sure that |E ∩ [m,m + 1]| ≥ p
for all m ∈ Z. Fix m and let X1, . . . ,XNm be 0/1 ran-
dom variables such that Xi is 0 if we included the
i-th subinterval of [m,m + 1] into the set E and is
1 otherwise. In other words, Xi denotes the ab-
sence of the i-the subinterval from the set E. Clearly
EXi = 1 − q and the random variable

X =
Nm∑
i=1

Xi (the number of missing subintervals)

is a sum of independent indicator random variables
with EX = (1− q)Nm and we can use the very versa-
tile large deviation Chernoff inequality (to be used
repeatedly in §§3.1,4 below)

(2.1) P [|X − EX| ≥ ϵEX] ≤ 2e−cϵEX

(see [Che52, AS16]) with ϵ = 1 to obtain

P
[|E ∩ [m,m + 1]| < p

]
= P
[
X > (1 − p)Nm

]
= P [X − EX > EX]
≤ 2 exp(−c1(1 − q) max {K, |m|}).(2.2)

Define now the bad events Bm =
{|E ∩ [m,m + 1]| < p

}
which we want not to hold, for all m ∈ Z, and ob-
serve that the above inequality means that we can
choose K large enough to achieve∑

m∈Z
P [Bm] <

1
2
.

This means that with probability at least 1/2 none
of the bad events Bm hold and, with the same prob-
ability, the set B has measure 0. We now amend our
random set E by removing from it the set B (the set
of first terms of those x +A which are contained in
E). Thus arises a set E′, which differs from E by a
set of measure 0, and which contains no translate
of A. □

Remark 2.1. It is not necessary to assume that
an → +∞ in Theorem 2.1. It suffices to assume that
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the set A is infinite. If A does not contain a se-
quence tending to infinity (for Theorem 2.1 to apply
to it) then it will have a finite accumulation point,
so a result of Komjáth [Kom83] guarantees the exis-
tence of a set Ẽ ⊆ [0, 1], of measure arbitrarily close
to 1, which contains no translate ofA. Repeating Ẽ
1-periodically

E =
⋃
n∈Z

Ẽ + n

we obtain a set E with the required properties. For
a probabilistic proof of this result in the spirit of the
present paper see [Kol97].

Remark 2.2. The Chernoff inequality (2.1) is ex-
tremely useful when one needs to control a random
variable X (this means that one wants to ensure,
with high probability, that X is near its mean EX)
which is a sum of indicator, independent random
variables. The key is that the mean EX cannot be
very small, as it appears in the exponent in the
right hand side of (2.1). Since one usually wants
to do so simultanesouly for a large number of ran-
dom variables X, one key situation to keep in mind
is the following: if the number of random variables
to be controlled is polynomial in N (a parameter) it
is enough that their mean are at least a large mul-
tiple of log N.

With minor modifications of the proof we can get
a progressively denser set E avoiding all translates.
We throw in the whole negative half line (as we
could have done in Theorem 1.1 too).

Theorem 2.2. Let A = {a0 = 0 < a1 < a2 < · · ·} ⊆ R
be a sequence with an → +∞. Then we can find a
Lebesgue measurable set E ⊆ R such that no trans-
late of A

x +A, x ∈ R,
is contained in E, and such that
(−∞, 0] ⊆ E and |E ∩ [m,m + 1]| → 1− as m→ +∞.
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Proof. We indicate the differences with the proof of
Theorem 2.1 and omit some details.

Our random set E now will be of the same type as
in the proof of Theorem 2.1 but with the probability
of including the small subintervals tending slowly
to 1 as we go out to +∞ and with the negative half
line contained in E to begin with.

Let us view the probability of keeping an inter-
val as a function p(s) defined on the real line. In
the proof of Theorem 2.1 this function was constant.
Here it will be constant on all intervals of the form
[m,m + 1], m ∈ Z.

Withϕ(x) = 1 (x +A ⊆ E) we need again to ensure
that Eϕ(x) = 0 for all x ∈ R. After assuming, as in
the previous proof, that the points of A differ by at
least 1, we again have independence of all events x+
a ∈ E for a ∈ A so that Eϕ(x) = 0 becomes equivalent
to ∏

a∈A
p(x + a) = 0,

which, writing q(s) = 1 − p(s), is equivalent to

(2.3)
∑
a∈A

q(x + a) = +∞.

Let 0 = k1 < k2 < · · · be those positive integers for
which

[k, k + 1) ∩A , ∅.
Define then q(x) to be 1/i in the interval [ki, ki+1), i =
1, 2, . . .. It follows easily that for all x ∈ R we have
(2.3): since the function q(·) is decreasing we have
q(x+an) ≥ q(an) if x ≤ 0 and if x ≥ 0 we have q(x+an) ≥
q(a⌈x⌉+n) since ak+1−ak ≥ 1 for all k ∈N. In both cases
the series (2.3) contains a tail of the series

∑
a∈A q(a)

which is divergent.
It remains to ensure that the random variables

|[m,m + 1] \ E| tend to 0 with m → +∞. These ran-
dom variables are 1

Nm
times a sum of independent

indicator random variables (one for each of the Nm
subintervals into which we break up [m,m + 1]) of
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mean q(m)Nm so we can use the Chernoff bound (2.1)
to obtain
P
[|[m,m + 1] \ E| > 2q(m)

] ≤ 2 exp(−c1q(m)Nm).

To ensure that the sum, over all m ∈ Z of the left
hand side is < 1 we can of course pick the integers
Nm to be very large, say Nm = K 1

q(m) |m|, with a suffi-
ciently large constant K > 0.

□

3. No affine copies for slowly increasing
sequences

In this section we prove Theorem 1.1 and explain
why the proof also gives the more general Theorem
1.2.

Lemma 3.1. LetA ∈ (A). For all 0 < a < b, 0 ≤ p < 1
and ϵ > 0, there is N0 ∈ N, such that for all N ≥ N0,
there is a set E ⊆ [−N,N] such that

(i) for all m ∈ {−N,−N + 1, ...,N − 1}, we have
|E ∩ [m,m + 1]| ≥ p, and

(ii) if the set B consists of all x ∈ [−N,N] for
which there is t ∈ [a, b] such that

(a) (x + tA) ∩ [−N,N] ⊆ E and
(b) #((x + tA) ∩ [−N,N]) ≥ A

(
N

10b

)
,

then |B| < ϵ. Here, A(·) is the counting function (1.1)
of the set A and A

(
N

10b

)
= |A ∩ [0,N/(10b)]|.

Let us first show how one derives Theorem 1.1
from Lemma 3.1. We give the proof of Theorem 1.1
in two steps: the first one verifies the result for a
restricted scale, that is, for scales in a compact in-
terval, and the second one concludes for all positive
scales, by writing the whole scaling interval (0,+∞)
as a countable union of intervals of the above type.

Step 1. For all 0 < a < b and for each 0 ≤ p < 1,
there exists a set E ⊆ R, such that |E ∩ [m,m + 1]| ≥ p
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for all m ∈ Z, but E does not contain any affine copies
of A with scale in [a, b].

Consider 0 ≤ p < 1 and a positive increasing se-
quence {pn}, n = 1, 2, ... such that pn → 1− and, more-
over,

(3.1)
∞∑

n=0

(1 − pn) < 1 − p.

Take also any positive sequence ϵn → 0. Accord-
ing to Lemma 3.1, for 0 < a < b, we can choose
an increasing sequence of natural numbers Nn =
Nn(pn, ϵn, a, b) → ∞, for which there exist sets En ⊆
[−Nn,Nn] with the following properties:

(i) for all m = −Nn, ...,Nn − 1, we have
|En ∩ [m,m + 1]| ≥ pn,

(ii) if
An(x, t) = (x + tA) ∩ [−Nn,Nn]

and
Bn = {x ∈ [−Nn,Nn] : ∃t ∈ [a, b] s.t. An(x, t) ⊆ En

and #An(x, t) ≥ A
(Nn

10b

)
},

then |Bn| < ϵn.

Now take
Ẽn = (−∞,−Nn] ∪ En ∪ [Nn,+∞)

and

E =
∞⋂

n=1

Ẽn.

−Nn · · ·. . . . . . .· · ·Nn0

Figure 2. The set Ẽn.

Then, since
∣∣∣∣Ẽn ∩ [m,m + 1]

∣∣∣∣ ≥ pn for all m ∈ Z, we
get from (3.1) that the set E has measure at least p
at every unit interval with integer endpoints. Also,
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if there exist x, t such that x + tA ⊆ E, then x + tA
is also contained in each Ẽn. Having fixed x and t
we can then find n0 large enough such that for all
n ≥ n0, we have #((x+tA)∩[−Nn,Nn]) ≥ A

(
Nn
10b

)
. This

implies that for every n ≥ n0, x ∈ Bn. It follows that
for every n ≥ n0, |Bn| < ϵn. Since ϵn → 0, setting

B = {x : ∃t ∈ [a, b] s.t. x + tA ⊆ E},

we get |B| = 0. The null set of “bad" translates B is
contained in E (since we assumed that 0 ∈ A), thus
removing it from E results in a set E′, which still
has measure |E′ ∩ [m,m + 1]| ≥ p for all m ∈ Z, but
contains no affine copy of A with scale in [a, b].

Step 2. Completion of the proof of Theorem 1.1.
Take a positive sequence p′n ∈ [0, 1), n ∈ Z, such

that

(3.2)
∑
n∈Z

(1 − p′n) < 1 − p.

Consider the intervals [an, bn] = [2n−1, 2n], n ∈ Z.
Then, according to Step 1, for each p′n, there exists
a set En such that |En ∩ [m,m + 1]| ≥ p′n, for all m ∈ Z,
but for all x ∈ R and for all t ∈ [an, bn], the set x+ tA
is not contained in En.

Take
E =
⋂
n∈Z

En.

Assume that for some x ∈ R and some t > 0, x +
tA ⊆ E. Then, x + tA ⊆ En, for all n ∈ Z. However,
since there is n0 ∈ Z such that t ∈ [2n0−1, 2n0], the
inclusion x + tA ⊆ En0 cannot be true. Thus, E does
not contain any affine copy ofA with positive scale.
Finally, due to (3.2) we have |[m,m + 1] \ E| < 1 − p,
or |E ∩ [m,m + 1]| ≥ p.

3.1. Proof of Lemma 3.1. Fix the scale t ∈ [a, b]
and let 0 ≤ p < 1. Consider the positive sequence
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given by

(3.3) pN = 1 −

√√√√
log
(

N
10b

)
A
(

N
10b

) .
From (1.2) this implies pN → 1−.

Partition [−N,N] into unit intervals [m,m + 1],
m = −N,−N + 1, ...,N − 1. Divide each [m,m + 1]
further, into kN equal subintervals

Ii,m = m +
[ i − 1

kN
,

i
kN

]
, i = 1, ..., kN,

where

(3.4) kN =
⌈10

a

⌉ N
1 − pN

.

Notice that kN/N→ +∞.
Construct a random set E = EN as follows: keep

each Ii,m in E independently of the other intervals
and with probability pN as in (3.3). Then, P(x ∈ E) =
pN for each x ∈ [−N,N].

−N · · · -3 -2 -1 0 1 2 3 · · ·N

Figure 3. The random set E.

Let MN(x, t) be the number of elements of (x+tA)∩
[−N,N] and observe that

(3.5) MN(x, t) ≤ A(2N/a), for x ∈ [−N,N].

For a given set E ⊆ [−N,N], consider the set of “bad"
translates

B =
{
x ∈ [−N,N] : ∃t ∈ [a, b] s.t. (x+tA)∩[−N,N] ⊆ E

and MN(x, t) ≥ A
( N
10b

)}
.
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We first deal with the measure of B. We have

E|B| = E
∫ N

−N
1B(x)dx

=

∫ N

−N
P
[
∃t ∈ [a, b] : (x + tA) ∩ [−N,N] ⊆ E(3.6)

and MN(x, t) ≥ A
( N
10b

)]
dx.(3.7)

In what follows, we estimate from above the proba-
bility in (3.7), uniformly in x ∈ [−N,N].

Fix x ∈ [−N,N]. To check whether there exists t ∈
[a, b] such that (x + tA) ∩ [−N,N] ⊆ E, it is sufficient
to check whether such a t exists in a finite set

(3.8) S = S(x) = {t1, t2, ..., tu} ⊆ [a, b].

Write α′0 < α
′
1 < ... < α

′
MN(x,t)−1 for the elements of

−N · · · -3 -2 -1 0 1 2 3 · · ·N
x

x + t1an1

x + t2an2

Figure 4. As x is held fixed and t
grows the points x+ tan cross over in-
terval endpoints creating events that
need to be checked.

(x + tA) ∩ [−N,N]. Then, the set S consists exactly
of those t ∈ [a, b] for which some α′j = x + ta j, j =

0, ...,MN(x, t)−1, is in the set m+
{
0, 1

kN
, 2

kN
, ..., kN−1

kN
, 1
}
,

for some m ∈ {−N,−N + 1, ...,N − 1}. Each of the
points α′j = x + ta j traverses, as t moves from a to b,
and as long as the point α′j remains in [−N,N], an
interval of length at most 2N, therefore it meets at
most 2NkN interval endpoints of the intervals Ii,m.
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Altogether, we have
(3.9)

u ≤ 2NkN sup
a≤t≤b

MN(x, t) ≤ c(a)N2(1 − pN)−1A
(2N

a

)
,

where for the last inequality, we used (3.4) and
(3.5).

Since kN → +∞, we can take N large enough, say
N ≥ N0, so that kN > 1/a, for every N ≥ N0. Then,
the length of each Ii,m is small enough, ≤ a, to ensure
that, for each t ∈ [a, b], the points α′j, j = 0, ...,MN−1,
all belong to different intervals Ii,m. Therefore, for
any fixed x and t,

P
[
(x + tA) ∩ [−N,N] ⊆ E and MN(x, t) ≥ A

( N
10b

)]
≤ P
[
(x + tA) ∩ [−N,N] ⊆ E | MN(x, t) ≥ A

( N
10b

)]

≤ p
A( N

10b )
N .

(3.10)

Thus, using the bound (3.9),
P [∃t ∈ S : (x + tA) ∩ [−N,N]) ⊆ E]

≤ c(a)N2(1 − pN)−1A
(2N

a

)
p

A( N
10b )

N .

Thus, (3.7) yields

E|B| ≤ 2c(a)N3(1 − pN)−1A
(2N

a

)
p

A( N
10b )

N .

We want to have

N3(1 − pN)−1A
(2N

a

)
p

A( N
10b )

N → 0,

while pN → 1−, as N→∞. Since A(·) grows at most
linearly at infinity, it suffices to show that

A
( N
10b

)
log pN

4 log N

A
(

N
10b

)
log pN

−
log(1 − pN)

A
(

N
10b

)
log pN

+ 1


(3.11)

→ −∞.



LARGE SETS WITH NO COPIES OF A SEQUENCE 19

To show (3.11), observe first that since
limx→+∞ x log

(
1 − x−1/2

)
= −∞, we have

(3.12)
A
(

N
10b

)
log pN

log N
→ −∞,

due to (3.3). Therefore, we also have
A
(

N
10b

)
log pN → −∞. Finally, by (3.3) and (3.12) we

get

log(1 − pN)

A
(

N
10b

)
log pN

= −1
2

log A
(

N
10b

)
A
(

N
10b

)
log pN

1 −
log log N

10b

log A
(

N
10b

)→ 0.

In other words, we have shown that for every ϵ > 0,
there is N1 ≥ N0 such that for all N ≥ N1, E|B| < ϵ/2,
which implies that
(3.13) P(|B| ≥ ϵ) < 1/2, ∀N ≥ N1.

We now turn to the measure of E in every unit
interval with integer endpoints. Fix m ∈ [−N,N].
Let Xm

1 ,X
m
2 , ...,X

m
kN

be independent indicator random
variables, with Xm

i = 1 if and only if Ii,m ⊆ E. Let
Ym

i = 1 − Xm
i and denote by Xm =

∑kN
i=1 Xm

i , Ym =∑kN
i=1 Ym

i their sums. Then, EYm = (1− pN)kN. Notice
also that the total measure kept in [m,m + 1] ∩ E is
equal to Xm/kN.

For any δ > 0 we define the “bad" events
Am = {|Ym−EYm| > δEYm}, m = −N,−N+1, ...,N−1.

To control P [Am], we use Chernoff’s inequality,
[AS16, Che52]: for all δ > 0,

P [Am] ≤ 2e−cδEYm
,

where cδ = min
{
(1 + δ) log(1 + δ) − δ log δ, δ2/2

}
.

Take δ = 1/2. It follows that

P
[
|Ym − (1 − pN)kN | >

1
2

(1 − pN)kN

]
≤ 2 exp

(
−1

2
(1 − pN)kN

)
.
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Thus, the probability that there is some [m,m +
1] ⊆ [−N,N], such that Am holds, is at most

4N exp
(
−1

2
(1 − pN)kN

)
and the right hand side tends to zero as N → +∞,
by our choice of kN in (3.4). Thus, there is N2 ≥ N1
such that
(3.14)
P [∃m ∈ {−N,−N + 1, ...,N − 1} : Am holds] <

1
2
,

for all N ≥ N2. Then, (3.13) and (3.14) imply the
existence of a set E ⊆ R such that, on the one hand,
it satisfies

|B| < ϵ
and on the other hand,

Xm − pNkN ≥ −
1
2

(1 − pN)kN,

for all m = −N,−N+ 1, ...,N− 1, for all N ≥ N2. Thus
the measure of E in each unit interval [m,m+1], is at
least pN− 1

2 (1−pN)→ 1, as pN → 1−. In other words,
for all 0 ≤ p < 1, there is N3 ≥ N2 such that for all
N ≥ N3, we have |E ∩ [m,m + 1]| ≥ p. The proof of
Lemma 3.1 is now complete.

Remark 3.1. Let us indicate here why the proof of
Theorem 1.1 just completed also applies to Theorem
1.2 without any essential changes. First of all, the
implication from Lemma 3.1 to Theorem 1.3 (finite
to infinite) remains true almost verbatim. So it suf-
fices to ensure that Lemma 3.1 is true in this case.
The main ingredients of the proof of Lemma 3.1 are
the following. Having fixed x and varying t we have
to make sure that the following conditions hold.

C.1 All points of the the (x, t)-copy of the set re-
main well separated, so that independence
applies and we can multiply the probabili-
ties that they belong to our random set. This
is ensured by (1.4).
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C.2 The number of points in the (x, t)-copy of the
set in the interval [−N,N] has to be large
as this is the exponent in the upper bound
(3.10). Condition (1.5) guarantees this.

C.3 The number of events that need to be
checked so that we are certain that for all
t no (x, t)-copy is contained in our random
set is small. This is the number u in (3.8).
What we are doing in the proof is to count
how many times each of the points of our set
(as x is held fixed and t increases from a to
b) crosses over an interval boundary. Since
the ϕ(n, t) are assumed increasing in t this
remains as before.

It should be clear that the conditions imposed on
the scaling functions ϕ(n, t) in Theorem 1.2 are far
from optimal. They are rather indicative of what
can be accomplished with the method and it is clear
that the method could work under different sorts of
conditions.

4. The problem in higher dimension

We will derive Theorem 1.3 as a consequence of
the more finitary theorem below.

Theorem 4.1. Let d1, d ≥ 1, β, ζ > 0, p ∈ (0, 1). Let
also α(N) be a function satisfying α(N)

log N
→ +∞.

Then if N is sufficiently large and P ⊆ Rd1 is a
point set with at most Nζ points there is a set EN ⊆
[−N,N]d such that

(1)
∣∣∣∣EN ∩

(
m + [0, 1]d

)∣∣∣∣ ≥ p for all m =

(m1, . . . ,md) ∈ Zd, with −N ≤ m j < N,
(2) For any linear map T : Rd1 → Rd if

(4.1) T(P) ∩ [−N,N]d
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contains at least α(N) points with
separation≥ N−β then

(4.2)
(
T(P) ∩ [−N,N]d

)
⊊ EN.

Proof. Let γ > β and split the cube [−N,N]d with a
N−γ× · · ·×N−γ-spaced grid of O(dN1+γ) hyperplanes
perpendicular to the d coordinate axes. Define the
random set E to contain each of the N−γ × · · · ×N−γ-
sized cubes independently with probability p′ ∈
(p, 1). We show that with positive probability one
can take EN = E.

The first property of E is a simple consequence of
Chernoff bounds and we can assume it holds with
probability > 1

2 working as in the proof of Theorem
1.1.

Let T = (Ti, j) be a linear map Rd1 → Rd. This
depends on d · d1 real variables Ti, j, so we view T as
an element of Rd·d1 . Instead of checking condition
(2) for all T ∈ Rd·d1 we first show that there is a
small number (polynomial in N) of T’s that need to
be checked.

Indeed, the set of N−γ× · · ·×N−γ-sized cubes that
contain T(P) does not change when T varies except
when one or more of the points in T(P) cross a di-
viding hyperplane of those that subdivide [−N,N]d.
Let H be one of those O(dN1+γ) hyperplanes and fix
an arbitrary point h ∈ H. Let also u be a unit vector
orthogonal to H. For a point x ∈ Rd to belong to H
it must satisfy the linear equation

E(H, x) : u · x = u · h.
Let q ∈ P. For the point T(q) to belong to H we must
have

E(H,T(q)) : u · T(q) = u · h,
which is a linear equation in T ∈ Rd·d1 . Taking all
such equations in T, over all dividing hyperplanes
H and all q ∈ P we obtain a subdivision of Rd·d1 by

n = O(d ·N1+γ · |P|)
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hyperplanes. These n hyperplanes subdivide Rd·d1

into m = O(nd·d1) connected regions (this is eas-
ily proved by induction on the dimension, or see
[Buc43]). For any two points T1,T2 in the same re-
gion condition (4.2) is either true for both or false
for both since we can move continuously from T1 to
T2 without leaving the region and, therefore, with-
out any of the point T(q) touching any of the dividing
hyperplanes H.

T1

T2

Figure 5. The regions defined in T-
space by the equations E(H,T(q)) for
all H, q. Only one of the transforma-
tions T1, T2 needs to be checked.

It suffices therefore to check condition (4.2) for
one point per region. Let us call these points
T1, . . . ,Tm. To guarantee that (4.2) holds for all T
it is enough for it to be true for all T j, j = 1, 2, . . . ,m.
Define the bad events

B j =
⋂
q∈P

{
T j(q) ∈ E

}
.
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We need to ensure that none of the B j holds, but we
only need to check those B j for which there is a T
in the cell of T j for which (4.1) holds. For such a j
the number of different N−γ × · · · ×N−γ-sized cubes
touched by T j(P) is the same as the number touched
by T(P) which is at least α(N) so

P
[
B j

]
≤ p′α(N),

and it is therefore enough to make sure that
nd·d1p′α(N) = O

(
Nζ·d·d1N(1+γ)d·d1p′α(N)

)
can be made arbitrarily small by choosing N large.
This is clearly possible since the term p′α(N) decays
faster than any power of N. □

Proof of Theorem 1.3. Let pn ∈ (0, 1) be such that

(4.3)
∞∑

n=1

(1 − pn) < 1 − p.

Apply Theorem 4.1 successively for N = n, pn, ζ = b,
α(N) = α(R), β = f and the set P = A ∩ [−n,n]d1 to
obtain sets En ⊆ [−n,n]d. Define

E =
∞⋂

n=1

(
En ∪ (Rd \ [−n,n]d)

)
.

It is easy to see because of (4.3) that for any m ∈
Zd we have

∣∣∣E ∩m + [0, 1]d
∣∣∣ ≥ p. Let T : Rd1 → Rd

and let R be such that T(A) ∩ BR(0) contains α(R)
points which are R− f separated. Let n = ⌈R⌉. It
follows from Theorem 4.1 that T(A)∩ [−n,n]d is not
contained in En ∪ (Rd \ [−n,n]d) and therefore not
contained in E, as we had to show. □
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