1. Consider the function $f(z)=z^{2}$. Describe the image of the region

$$
\left\{z \in \mathbb{C}: \frac{1}{2} \leq|z| \leq 2, \quad \operatorname{Arg} z \in[\pi / 4, \pi / 2]\right\}
$$

Do the same for the function $g(z)=z^{3}$. Prove that the function $z \rightarrow \sqrt{z}$ can be defined in this region as a continuous function and find the image of this region through this function.
2. Using the Cauchy-Riemann equations investigate which of the following functions are differentiable and at which points of their domain of definition.

$$
\begin{gathered}
f(z)=\bar{z}, f(z)=z-\bar{z}, f(z)=2 x+i x y^{2}, f(z)=e^{x} e^{-i y} \\
f(z)=e^{-x} e^{-i y}, f(z)=(x+i y)^{3}, f(z)=\frac{1}{x+i y}, f(z)=x^{2}+y^{2},(x+i y) y
\end{gathered}
$$

