University of Crete – Department of Mathematics and Applied Mathematics Problems No 2

1. Find one value of $\arg z$.

$$z = \frac{-2}{1 + \sqrt{3}i}, \quad z = \frac{i}{-2 - 2i}, \quad z = (\sqrt{3} - i)^6.$$

2. Using the polar form show that

$$(i-1)^7 = -8(1+i).$$

3. Find the following roots in polar coordinates and show them geometrically.

$$(2i)^{1/2}$$
, $(-1)^{1/3}$, $(-16)^{1/4}$, $8^{1/6}$.

- **4.** Use de Moivre's formula to compute $\cos 4\theta$ as a function of $\cos \theta$, $\sin \theta$.
- **5.** If $z \in \mathbb{C} \setminus \{1\}$ and $n \in \mathbb{N}$ show that $1 + z + z^2 + \cdots + z^n = \frac{1 z^{n+1}}{1 z}$. Then use this to show the formula

$$1 + \cos\theta + \cos 2\theta + \dots + \cos n\theta = \frac{1}{2} + \frac{\sin\frac{2n+1}{2}\theta}{2\sin(\theta/2)}, \quad (0 < \theta < 2\pi).$$

6. Which curve in the complex plane is described by each of the following parametrizations?

$$\begin{split} z(t) &= 1 + i + \sqrt{2}e^{it}, \quad 0 \le t < 2\pi, \\ w(t) &= 1 + i + (i - 1)t, \quad t \in \mathbb{R}, \\ u(t) &= it - (1 - t), \quad 0 \le t \le 1, \\ s(t) &= t + t^2i, \quad t \in \mathbb{R}, \\ S(t) &= it - t^2, \quad t \in \mathbb{R}. \end{split}$$