Georgia Institute of Technology School of Mathematics

Practice final exam for MATH 2401, Sections J1 and J2

Instructor: Mihalis Kolountzakis

April 25, 2007

No books, notes or calculators of any kind are allowed. Maximum number of points is 40 (10 for each problem). Duration of test is 2 hours 50 min.

Justify all your answers

1. Find the point of maximal curvature of the curve $y = \ln x$, for x > 0.

2. Find the points on the sphere $x^2 + y^2 + z^2 = 1$ that are the closest to and farthest from (2, 1, 2). You must use the method of Lagrange multipliers.

3. Using a double integral and polar coordinates find the volume of the solid bounded below by the plane z = 0 and above by the surface

$$x^2 + y^2 + z^6 = 5.$$

4. Evaluate the line integral

$$\oint_C y^2 \, dx$$

where C is the rectangle with vertices (0,0), (a,0), (a,b), (0,b) oriented in the positive direction.

5. Let $\vec{h}(x, y, z) = (2xz + \sin y, x \cos y, x^2)$. Find a scalar function f(x, y, z) such that $\vec{h} = \vec{\nabla} f$ and use it to evaluate the line integral

$$\oint_C \vec{h} \cdot d\bar{r}$$

where C is the curve given by the parametrization $\vec{r}(t) = (\cos t, \sin t, t), 0 \le t \le 2\pi$. 6. A homogenous wire of mass M winds around the z-axis as

$$C: \quad \vec{r}(t) = (a\cos t, a\sin t, bt), \quad 0 \le t \le 2\pi.$$

Find the length of the wire, the center of mass and the moment of inertia around the z-axis, in terms of the quantities a, b, M.

7. Suppose that f and g have continuous first order partial derivatives in a simply connected open domain Ω . Show that if C is any smooth simple closed curve in Ω , then

$$\oint_C \left(f(\vec{r}) \vec{\nabla} g(\vec{r}) + g(\vec{r}) \vec{\nabla} f(\vec{r}) \right) \cdot d\vec{r} = 0.$$