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Preface

These are notes for a topics course offered at Bowling Green State University on a variety of
occasions. The course is typically offered during a somewhat abbreviated six week summer
session and, consequently, there is a bit less material here than might be associated with a
full semester course offered during the academic year. On the other hand, I have tried to
make the notes self-contained by adding a number of short appendices and these might well
be used to augment the course.

The course title, approximation theory, covers a great deal of mathematical territory. In
the present context, the focus is primarily on the approximation of real-valued continuous
functions by some simpler class of functions, such as algebraic or trigonometric polynomials.
Such issues have attracted the attention of thousands of mathematicians for at least two
centuries now. We will have occasion to discuss both venerable and contemporary results,
whose origins range anywhere from the dawn of time to the day before yesterday. This
easily explains my interest in the subject. For me, reading these notes is like leafing through
the family photo album: There are old friends, fondly remembered, fresh new faces, not yet
familiar, and enough easily recognizable faces to make me feel right at home.

The problems we will encounter are easy to state and easy to understand, and yet
their solutions should prove intriguing to virtually anyone interested in mathematics. The
techniques involved in these solutions entail nearly every topic covered in the standard
undergraduate curriculum. From that point of view alone, the course should have something
to offer both the beginner and the veteran. Think of it as an opportunity to take a grand tour
of undergraduate mathematics (with the occasional side trip into graduate mathematics)
with the likes of Weierstrass, Gauss, and Lebesgue as our guides.

Approximation theory, as you might guess from its name, has both a pragmatic side,
which is concerned largely with computational practicalities, precise estimations of error,
and so on, and also a theoretical side, which is more often concerned with existence and
uniqueness questions, and “applications” to other theoretical issues. The working profes-
sional in the field moves easily between these two seemingly disparate camps; indeed, most
modern books on approximation theory will devote a fair number of pages to both aspects
of the subject. Being a well-informed amateur rather than a trained expert on the subject,
however, my personal preferences have been the driving force behind my selection of topics.
Thus, although we will have a few things to say about computational considerations, the
primary focus here is on the theory of approximation.

By way of prerequisites, I will freely assume that the reader is familiar with basic notions
from linear algebra and advanced calculus. For example, I will assume that the reader is
familiar with the notions of a basis for a vector space, linear transformations (maps) defined
on a vector space, determinants, and so on; I will also assume that the reader is familiar
with the notions of pointwise and uniform convergence for sequence of real-valued functions,
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iv PREFACE

“ε-δ” and “ε-N” proofs (for continuity of a function, say, and convergence of a sequence),
closed and compact subsets of the real line, normed vector spaces, and so on. If one or two
of these phrases is unfamiliar, don’t worry: Many of these topics are reviewed in the text;
but if several topics are unfamiliar, please speak with me as soon as possible.

For my part, I have tried to carefully point out thorny passages and to offer at least
a few hints or reminders whenever details beyond the ordinary are needed. Nevertheless,
in order to fully appreciate the material, it will be necessary for the reader to actually
work through certain details. For this reason, I have peppered the notes with a variety of
exercises, both big and small, at least a few of which really must be completed in order to
follow the discussion.

In the final chapter, where a rudimentary knowledge of topological spaces is required, I
am forced to make a few assumptions that may be unfamiliar to some readers. Still, I feel
certain that the main results can be appreciated without necessarily following every detail
of the proofs.

Finally, I would like to stress that these notes borrow from a number of sources. Indeed,
the presentation draws heavily from several classic textbooks, most notably the wonderful
books by Natanson [41], de La Vallée Poussin [37], and Cheney [12] (numbers refer to the
References at the end of these notes), and from several courses on related topics that I
took while a graduate student at The Ohio State University offered by Professor Bogdan
Baishanski, whose prowess at the blackboard continues to serve as an inspiration to me. I
should also mention that these notes began, some 20 years ago as I write this, as a supplement
to Rivlin’s classic introduction to the subject [45], which I used as the primary text at the
time. This will explain my frequent references to certain formulas or theorems in Rivlin’s
book. While the notes are no longer dependent on Rivlin, per se, it would still be fair to
say that they only supplement his more thorough presentation. In fact, wherever possible,
I would encourage the interested reader to consult the original sources cited throughout the
text.
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Chapter 1

Preliminaries

Introduction

In 1853, the great Russian mathematician, P. L. Chebyshev (Čebyšev), while working on a
problem of linkages, devices which translate the linear motion of a steam engine into the
circular motion of a wheel, considered the following problem:

Given a continuous function f defined on a closed interval [ a, b ] and a posi-
tive integer n, can we “represent” f by a polynomial p(x) =

∑n
k=0 akx

k, of
degree at most n, in such a way that the maximum error at any point x in
[ a, b ] is controlled? In particular, is it possible to construct p so that the error
max a≤x≤b |f(x)− p(x)| is minimized?

This problem raises several questions, the first of which Chebyshev himself ignored:

– Why should such a polynomial even exist?

– If it does, can we hope to construct it?

– If it exists, is it also unique?

– What happens if we change the measure of error to, say,
∫ b
a
|f(x)− p(x)|2 dx?

Exercise 1.1. How do we know that C[ a, b ] contains non-polynomial functions? Name
one (and explain why it isn’t a polynomial)!

Best Approximations in Normed Spaces

Chebyshev’s problem is perhaps best understood by rephrasing it in modern terms. What
we have here is a problem of best approximation in a normed linear space. Recall that a
norm on a (real) vector space X is a nonnegative function on X satisfying

‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0,

‖αx‖ = |α|‖x‖ for any x ∈ X and α ∈ R,

‖x+ y‖ ≤ ‖x‖+ ‖y‖ for any x, y ∈ X.

1



2 CHAPTER 1. PRELIMINARIES

Any norm on X induces a metric or distance function by setting dist(x, y) = ‖x− y‖. The
abstract version of our problem(s) can now be restated:

Given a subset (or even a subspace) Y of X and a point x ∈ X, is there an
element y ∈ Y that is nearest to x? That is, can we find a vector y ∈ Y such
that ‖x− y‖ = min z∈Y ‖x− z‖? If there is such a best approximation to x from
elements of Y , is it unique?

It’s not hard to see that a satisfactory answer to this question will require that we take
Y to be a closed set in X, for otherwise points in Y \ Y (sometimes called the boundary of
the set Y ) will not have nearest points. Indeed, which point in the interval [ 0, 1) is nearest
to 1? Less obvious is that we typically need to impose additional requirements on Y in
order to insure the existence (and certainly the uniqueness) of nearest points. For the time
being, we will consider the case where Y is a closed subspace of a normed linear space X.

Examples 1.2.

1. As we’ll soon see, in X = Rn with its usual norm ‖(xk)nk=1‖2 =
(∑n

k=1 |xk|2
)1/2, the

problem has a complete solution for any subspace (or, indeed, any closed convex set)
Y . This problem is often considered in calculus or linear algebra where it is called
“least-squares” approximation. A large part of the current course will be taken up
with least-squares approximations, too. For now let’s simply note that the problem
changes character dramatically if we consider a different norm on Rn, as evidenced by
the following example.

2. Consider X = R2 under the norm ‖(x, y)‖ = max{|x|, |y|}, and consider the subspace
Y = {(0, y) : y ∈ R} (i.e., the y-axis). It’s not hard to see that the point x = (1, 0) ∈ R2

has infinitely many nearest points in Y ; indeed, every point (0, y), −1 ≤ y ≤ 1, is
nearest to x.

(0,1)

Y

1

0 11

sphere of radius 1, max norm

(0,1)

Y

1

0

sphere of radius 1, usual norm

3. There are many norms we might consider on Rn. Of particular interest are the `p-
norms; that is, the scale of norms:

‖(xi)ni=1‖p =

(
n∑
k=1

|xk|p
)1/p

, 1 ≤ p <∞,

and
‖(xi)ni=1‖∞ = max

1≤i≤n
|xi|.

It’s easy to see that ‖ · ‖1 and ‖ · ‖∞ define norms. The other cases take a bit more
work; for full details see Appendix A.
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4. The `2-norm is an example of a norm induced by an inner product (or “dot” product).
You will recall that the expression

〈x, y 〉 =
n∑
i=1

xiyi,

where x = (xi)ni=1 and y = (yi)ni=1, defines an inner product on Rn and that the norm
in Rn satisfies

‖x‖2 =
√
〈x, x 〉 .

In this sense, the usual norm on Rn is actually induced by the inner product. More
generally, any inner product will give rise to a norm in this same way. (But not vice
versa. As we’ll see, inner product norms satisfy a number of special properties that
aren’t enjoyed by all norms.)

The presence of an inner product in an abstract space opens the door to geometric
arguments that are remarkably similar to those used in Rn. (See Appendix D for
more details.) Luckily, inner products are easy to come by in practice. By way of
one example, consider this: Given a positive Riemann integrable weight function w(x)
defined on some interval [ a, b ], it’s not hard to check that the expression

〈 f, g 〉 =
∫ b

a

f(t) g(t)w(t) dt

defines an inner product on C[ a, b ], the space of all continuous, real-valued functions
f : [ a, b ]→ R, with associated norm

‖f‖2 =

(∫ b

a

|f(t)|2w(t) dt

)1/2

.

We will take full advantage of this fact in later chapters (in particular, Chapters 8–9).

5. Our original problem concerns the space X = C[ a, b ] under the uniform norm ‖f‖ =
max a≤x≤b |f(x)|. The adjective “uniform” is used here because convergence in this
norm is the same as uniform convergence on [ a, b ]:

‖fn − f‖ → 0 ⇐⇒ fn → f uniformly on [ a, b ]

(which we will frequently abbreviate by writing fn ⇒ f on [ a, b ]). This, by the way,
is the norm of choice on C[ a, b ] (largely because continuity is preserved by uniform
limits). In this particular case we’re interested in approximations by elements of
Y = Pn, the subspace of all polynomials of degree at most n in C[ a, b ]. It’s not hard
to see that Pn is a finite-dimensional subspace of C[ a, b ] of dimension exactly n+ 1.
(Why?)

6. If we consider the subspace Y = P consisting of all polynomials in X = C[ a, b ], we
readily see that the existence of best approximations can be problematic. It follows
from the Weierstrass theorem, for example, that each f ∈ C[ a, b ] has distance 0
from P but, because not every f ∈ C[ a, b ] is a polynomial (why?), we can’t hope for
a best approximating polynomial to exist in every case. For example, the function
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f(x) = x sin(1/x) is continuous on [ 0, 1 ] but can’t possibly agree with any polynomial
on [ 0, 1 ]. (Why?) As you may have already surmised, the problem here is that every
element of C[ a, b ] is the (uniform) limit of a sequence from P; in other words, the
closure of Y equals X; in symbols, Y = X.

Finite-Dimensional Vector Spaces

The key to the problem of polynomial approximation is the fact that each of the spaces
Pn, described in Examples 1.2 (5), is finite-dimensional. To see how finite-dimensionality
comes into play, it will be most efficient to consider the abstract setting of finite-dimensional
subspaces of arbitrary normed spaces.

Lemma 1.3. Let V be a finite-dimensional vector space. Then, all norms on V are equiv-
alent. That is, if ‖ · ‖ and ||| · ||| are norms on V , then there exist constants 0 < A, B < ∞
such that

A ‖x‖ ≤ ||| x ||| ≤ B ‖x‖

for all vectors x ∈ V .

Proof. Suppose that V is n-dimensional and that ‖ · ‖ is a norm on V . Fix a basis e1, . . . , en
for V and consider the norm∥∥∥∥∥

n∑
i=1

aiei

∥∥∥∥∥
1

=
n∑
i=1

|ai| = ‖(ai)ni=1‖1

for x =
∑n
i=1 aiei ∈ V . Because e1, . . . , en is a basis for V , it’s not hard to see that ‖ · ‖1

is, indeed, a norm on V . [Notice that we’ve actually set-up a correspondence between Rn
and V ; specifically, the map (ai)ni=1 7→

∑n
i=1 aiei is obviously both one-to-one and onto. In

fact, this correspondence is an isometry between (Rn, ‖ · ‖1) and (V, ‖ · ‖1).]
It now suffices to show that ‖ · ‖ and ‖ · ‖1 are equivalent. (Why?)
One inequality is easy to show; indeed, notice that∥∥∥∥∥

n∑
i=1

aiei

∥∥∥∥∥ ≤
n∑
i=1

|ai| ‖ei‖ ≤
(

max
1≤i≤n

‖ei‖
) n∑
i=1

|ai| = B

∥∥∥∥∥
n∑
i=1

aiei

∥∥∥∥∥
1

.

The real work comes in establishing the other inequality.
Now the inequality we’ve just established shows that the function x 7→ ‖x‖ is continuous

on the space (V, ‖ · ‖1); indeed,∣∣ ‖x‖ − ‖y‖ ∣∣ ≤ ‖x− y‖ ≤ B ‖x− y‖1
for any x, y ∈ V . Thus, ‖ · ‖ assumes a minimum value on the compact set

S = {x ∈ V : ‖x‖1 = 1}.

(Why is S compact?) In particular, there is some A > 0 such that ‖x‖ ≥ A whenever
‖x‖1 = 1. (Why can we assume that A > 0?) The inequality we need now follows from the
homogeneity of the norm: ∥∥∥∥ x

‖x‖1

∥∥∥∥ ≥ A =⇒ ‖x‖ ≥ A ‖x‖1.
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Corollary 1.4. Every finite-dimensional normed space is complete (that is, every Cauchy
seqeuence converges). In particular, if Y is a finite-dimensional subspace of a normed linear
space X, then Y is a closed subset of X.

Corollary 1.5. Let Y be a finite-dimensional normed space, let x ∈ Y , and let M > 0.
Then, any closed ball { y ∈ Y : ‖x− y‖ ≤M } is compact.

Proof. Because translation is an isometry, it clearly suffices to show that the set { y ∈ Y :
‖y‖ ≤M } (i.e., the ball about 0) is compact.

Suppose now that Y is n-dimensional and that e1, . . . , en is a basis for Y . From
Lemma 1.3 we know that there is some constant A > 0 such that

A

n∑
i=1

|ai| ≤

∥∥∥∥∥
n∑
i=1

aiei

∥∥∥∥∥
for all x =

∑n
i=1 aiei ∈ Y . In particular,

A |ai| ≤

∥∥∥∥∥
n∑
i=1

aiei

∥∥∥∥∥ ≤M =⇒ |ai| ≤M/A for i = 1, . . . , n.

Thus, { y ∈ Y : ‖y‖ ≤M } is a closed subset (why?) of the compact set{
x =

n∑
i=1

aiei : |ai| ≤M/A, i = 1, . . . , n

}
= [−M/A, M/A ]n.

Theorem 1.6. Let Y be a finite-dimensional subspace of a normed linear space X, and let
x ∈ X. Then, there exists a (not necessarily unique) vector y∗ ∈ Y such that

‖x− y∗‖ = min
y∈Y
‖x− y‖

for all y ∈ Y . That is, there is a best approximation to x by elements from Y .

Proof. First notice that because 0 ∈ Y , we know that any nearest point y∗ will satisfy
‖x− y∗‖ ≤ ‖x‖ = ‖x− 0‖. Thus, it suffices to look for y∗ in the compact set

K = { y ∈ Y : ‖x− y‖ ≤ ‖x ‖}.

To finish the proof, we need only note that the function f(y) = ‖x− y‖ is continuous:

|f(y)− f(z)| =
∣∣∣ ‖x− y‖ − ‖x− z‖ ∣∣∣ ≤ ‖y − z‖,

and hence attains a minimum value at some point y∗ ∈ K.

Corollary 1.7. For each f ∈ C[ a, b ] and each positive integer n, there is a (not necessarily
unique) polynomial p∗n ∈ Pn such that

‖f − p∗n‖ = min
p∈Pn

‖f − p‖.
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Example 1.8. Nothing in Corollary 1.7 says that p∗n will be a polynomial of degree exactly
n—rather, it’s a polynomial of degree at most n. For example, the best approximation to
f(x) = x by a polynomial of degree at most 3 is, of course, p(x) = x. Even examples of
nonpolynomial functions are easy to come by; for instance, the best linear approximation
to f(x) = |x| on [−1, 1 ] is actually the constant function p(x) = 1/2, and this makes for an
entertaining exercise.

Before we leave these “soft” arguments behind, let’s discuss the problem of uniqueness of
best approximations. First, let’s see why we might like to have unique best approximations:

Lemma 1.9. Let Y be a finite-dimensional subspace of a normed linear space X, and
suppose that each x ∈ X has a unique nearest point yx ∈ Y . Then the nearest point map
x 7→ yx is continuous.

Proof. Let’s write P (x) = yx for the nearest point map, and let’s suppose that xn → x in
X. We want to show that P (xn) → P (x), and for this it’s enough to show that there is a
subsequence of (P (xn)) that converges to P (x). (Why?)

Because the sequence (xn) is bounded in X, say ‖xn‖ ≤M for all n, we have

‖P (xn)‖ ≤ ‖P (xn)− xn‖+ ‖xn‖ ≤ 2‖xn‖ ≤ 2M.

Thus, (P (xn)) is a bounded sequence in Y , a finite-dimensional space. As such, by passing
to a subsequence, we may suppose that (P (xn)) converges to some element P0 ∈ Y . (How?)
Now we need to show that P0 = P (x). But

‖P (xn)− xn‖ ≤ ‖P (x)− xn‖

for any n. (Why?) Hence, letting n→∞, we get

‖P0 − x‖ ≤ ‖P (x)− x‖.

Because nearest points in Y are unique, we must have P0 = P (x).

Exercise 1.10. Let X be a metric (or normed) space and let f : X → X. Show that f is
continuous at x ∈ X if and only if, whenever xn → x in X, some subsequence of (f(xn))
converges to f(x). [Hint: The forward direction is easy; for the backward implication,
suppose that (f(xn)) fails to converge to f(x) and work toward a contradiction.]

It should be pointed out that the nearest point map is, in general, nonlinear and, as
such, can be very difficult to work with. Later we’ll see at least one case in which nearest
point maps always turn out to be linear.

In spite of any potential difficulties with the nearest point map, we next observe that
the set of best approximations has a well-behaved, almost-linear structure.

Theorem 1.11. Let Y be a subspace of a normed linear space X, and let x ∈ X. The set
Yx, consisting of all best approximations to x out of Y , is a bounded convex set.

Proof. As we’ve seen, the set Yx is a subset of the ball { y ∈ X : ‖x−y‖ ≤ ‖x‖ } and, as such,
is bounded. (More generally, the set Yx is a subset of the sphere { y ∈ X : ‖x − y‖ = d },
where d = dist(x, Y ) = inf y∈Y ‖x− y‖.)

Next recall that a subset K of a vector space V is said to be convex if K contains the
line segment joining any pair of its points. Specifically, K is convex if

x, y ∈ K, 0 ≤ λ ≤ 1 =⇒ λx+ (1− λ)y ∈ K.
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Thus, given y1, y2 ∈ Yx and 0 ≤ λ ≤ 1, we want to show that the vector y∗ = λy1+(1−λ)y2 ∈
Yx. But y1, y2 ∈ Yx means that

‖x− y1‖ = ‖x− y2‖ = min
y∈Y
‖x− y‖.

Hence,

‖x− y∗‖ = ‖x− (λy1 + (1− λ)y2)‖
= ‖λ(x− y1) + (1− λ)(x− y2)‖
≤ λ‖x− y1‖+ (1− λ)‖x− y2‖
= min

y∈Y
‖x− y‖.

Consequently, ‖x− y∗‖ = min y∈Y ‖x− y‖; that is, y∗ ∈ Yx.

Exercise 1.12. If, in Theorem 1.11, we also assume that Y is finite-dimensional, show that
Yx is closed (hence a compact convex set).

If Yx contains more than one point, then, in fact, it contains an entire line segment.
Thus, Yx is either empty, contains exactly one point, or contains infinitely many points.
This observation gives us a sufficient condition for uniqueness of nearest points: If the
normed space X contains no line segments on any sphere {x ∈ X : ‖x‖ = r}, then best
approximations (out of any convex subset Y ) will necessarily be unique.

A norm ‖ · ‖ on a vector space X is said to be strictly convex if, for any pair of points
x 6= y ∈ X with ‖x‖ = r = ‖y‖, we always have ‖λx+ (1−λ)y‖ < r for all 0 < λ < 1. That
is, the open line segment between any pair of points on the sphere of radius r lies entirely
within the open ball of radius r; in other words, only the endpoints of the line segment can
hit the sphere. For simplicity, we often say that the space X is strictly convex, with the
understanding that we’re actually referring to a property of the norm in X. In any such
space, we get an immediate corollary to our last result:

Corollary 1.13. If X has a strictly convex norm, then, for any subspace Y of X and any
point x ∈ X, there can be at most one best approximation to x out of Y . That is, Yx is
either empty or consists of a single point.

In order to arrive at a condition that’s somewhat easier to check, let’s translate our
original definition into a statement about the triangle inequality in X.

Lemma 1.14. A normed space X has a strictly convex norm if and only if the triangle
inequality is strict on nonparallel vectors; that is, if and only if

x 6= αy, y 6= αx, all α ∈ R =⇒ ‖x+ y‖ < ‖x‖+ ‖y‖.

Proof. First suppose that X is strictly convex, and let x and y be nonparallel vectors in X.
Then, in particular, the vectors x/‖x‖ and y/‖y‖ must be different. (Why?) Hence,∥∥∥∥ ( ‖x‖

‖x‖+ ‖y‖

)
x

‖x‖
+
(

‖y‖
‖x‖+ ‖y‖

)
y

‖y‖

∥∥∥∥ < 1.

That is, ‖x+ y‖ < ‖x‖+ ‖y‖.
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Next suppose that the triangle inequality is strict on nonparallel vectors, and let x 6=
y ∈ X with ‖x‖ = r = ‖y‖. If x and y are parallel, then we must have y = −x. (Why?) In
this case,

‖λx+ (1− λ) y‖ = |2λ− 1| ‖x‖ < r

because −1 < 2λ − 1 < 1 whenever 0 < λ < 1. Otherwise, x and y are nonparallel. Thus,
for any 0 < λ < 1, the vectors λx and (1− λ) y are likewise nonparallel and we have

‖λx+ (1− λ) y‖ < λ‖x‖+ (1− λ)‖y‖ = r.

Examples 1.15.

1. The usual norm on C[ a, b ] is not strictly convex (and so the problem of uniqueness
of best approximations is all the more interesting to tackle). For example, if f(x) = x
and g(x) = x2 in C[ 0, 1 ], then f 6= g and ‖f‖ = 1 = ‖g‖, while ‖f + g‖ = 2. (Why?)

2. The usual norm on Rn is strictly convex, as is any one of the norms ‖·‖p for 1 < p <∞.
(See Problem 10.) The norms ‖ · ‖1 and ‖ · ‖∞, on the other hand, are not strictly
convex. (Why?)
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Problems

[Problems marked (.) are essential to a full understanding of the course. Problems marked
(∗) are of general interest and are offered as a contribution to your personal growth. Un-
marked problems are just for fun.]

The most important collection of functions for our purposes is the space C[ a, b ], con-
sisting of all continuous functions f : [ a, b ] → R. It’s easy to see that C[ a, b ] is a vector
space under the usual pointwise operations on functions: (f + g)(x) = f(x) + g(x) and
(αf)(x) = αf(x) for α ∈ R. Actually, we will be most interested in the finite-dimensional
subspaces Pn of C[ a, b ], consisting of all algebraic polynomials of degree at most n.

. 1. The subspace Pn has dimension exactly n+ 1. Why?

Another useful subset of C[ a, b ] is the collection lipKα, consisting of those f which satisfy
a Lipschitz condition of order α > 0 with constant 0 < K < ∞; i.e., those f for which
|f(x) − f(y)| ≤ K |x − y|α for all x, y in [ a, b ]. [Some authors would say that f is Hölder
continuous with exponent α.]

∗ 2. (a) Show that lipKα is, indeed, a subset of C[ a, b ].

(b) If α > 1, show that lipKα contains only the constant functions.

(c) Show that
√
x is in lip1(1/2) and that sinx is in lip11 on [ 0, 1 ].

(d) Show that the collection lipα, consisting of all those f which are in lipKα for
some K, is a subspace of C[ a, b ].

(e) Show that lip 1 contains all the polynomials.

(f) If f ∈ lipα for some α > 0, show that f ∈ lipβ for all 0 < β < α.

(g) Given 0 < α < 1, show that xα is in lip1α on [ 0, 1 ] but not in lipβ for any β > α.

The vector space C[ a, b ] is most commonly endowed with the uniform or sup norm, defined
by ‖f‖ = maxa≤x≤b |f(x)|. Some authors use ‖f‖u or ‖f‖∞ here, and some authors refer
to this as the Chebyshev norm. Whatever the notation used, it is the norm of choice on
C[ a, b ].

∗ 3. Show that Pn and lipKα are closed subsets of C[ a, b ] (under the sup norm). Is lipα
closed? A bit harder: Show that lip 1 is both first category and dense in C[ a, b ].

4. Fix n and consider the norm ‖p‖1 =
∑n
k=0 |ak| for p(x) = a0 + a1x+ · · ·+ anx

n ∈ Pn,
considered as a subset of C[ a, b ]. Show that there are constants 0 < An, Bn < ∞
such that An‖p‖1 ≤ ‖p‖ ≤ Bn‖p‖1, where ‖p‖ = max

a≤x≤b
|p(x)|. Do An and Bn

really depend on n ? Do they depend on the underlying interval [ a, b ]?

5. Fill-in any missing details from Example 1.8.

We will occasionally consider spaces of real-valued functions defined on finite sets; that is,
we will consider Rn under various norms. (Why is this the same?) We define a scale of
norms on Rn by setting ‖x‖p = (

∑n
i=1 |xi|p)

1/p, where x = (x1, . . . , xn) and 1 ≤ p < ∞.
(We need p ≥ 1 in order for this expression to be a legitimate norm, but the expression
makes perfect sense for any p > 0, and even for p < 0 provided no xi is 0.) Notice, please,
that the usual norm on Rn is given by ‖x‖2.
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6. Show that lim p→∞ ‖x‖p = max 1≤i≤n |xi|. For this reason we define

‖x‖∞ = max
1≤i≤n

|xi|.

Thus Rn under the norm ‖ · ‖∞ is the same as C({1, 2, . . . , n}) under its usual norm.

7. Assuming xi 6= 0 for i = 1, . . . , n, compute lim p→0+ ‖x‖p and lim p→−∞ ‖x‖p.
8. Consider R2 under the norm ‖x‖p. Draw the graph of the unit sphere {x : ‖x‖p = 1}

for various values of p (especially p = 1, 2, ∞).

9. In a normed space normed space (X, ‖ · ‖), prove that the following are equivalent:

(a) ‖x+ y‖ = ‖x‖+ ‖y‖ always implies that x and y lie in the same direction; that
is, either x = αy or y = αx for some nonnegative scalar α.

(b) If x, y ∈ X are nonparallel, then
∥∥∥∥x+ y

2

∥∥∥∥ < ‖x‖+ ‖y‖
2

.

(c) If x 6= y ∈ X with ‖x‖ = 1 = ‖y‖, then
∥∥∥∥x+ y

2

∥∥∥∥ < 1.

(d) X is strictly convex (as defined on page 7).

We write `np to denote the vector space of sequences of length n endowed with the p-norm;
that is, Rn supplied with the norm ‖ · ‖p. And we write `p to denote the vector space
of infinite length sequences x = (xn)∞n=1 for which ‖x‖p < ∞. In each space, the usual
algebraic operations are defined pointwise (or coordinatewise) and the norm is understood
to be ‖ · ‖p.

10. Show that `p (and hence `np ) is strictly convex for 1 < p < ∞. Show also that this
fails in cases p = 1 and p = ∞. [Hint: Show that the function f(t) = |t|p satisfies
f((s+ t)/2) < (f(s) + f(t))/2 whenever s 6= t and 1 < p <∞.]

∗ 11. Let X be a normed space and let B = {x ∈ X : ‖x‖ ≤ 1}. Show that B is a closed
convex set.

12. Consider R2 under the norm ‖ · ‖∞. Let B = {y ∈ R2 : ‖y‖∞ ≤ 1} and let x = (2, 0).
Show that there are infinitely many points in B nearest to x.

13. Let K be a compact convex set in a strictly convex space X and let x ∈ X. Show that
x has a unique nearest point y0 ∈ K.

14. Let K be a closed subset of a complete normed space X. Prove that K is convex if
and only if K is midpoint convex ; that is, if and only if (x + y)/2 ∈ K whenever x,
y ∈ K. Is this result true in more general settings? For example, can you prove it
without assuming completeness? Or, for that matter, is it true for arbitrary sets in
any vector space (i.e., without even assuming the presence of a norm)?



Chapter 2

Approximation by Algebraic
Polynomials

The Weierstrass Theorem

Let’s begin with some notation. Throughout this chapter, we’ll be concerned with the
problem of best (uniform) approximation of a given function f ∈ C[ a, b ] by elements from
Pn, the subspace of algebraic polynomials of degree at most n in C[ a, b ]. We know that the
problem has a solution (possibly more than one), which we’ve chosen to write as p∗n. We set

En(f) = min
p∈Pn

‖f − p‖ = ‖f − p∗n‖.

Because Pn ⊂ Pn+1 for each n, it’s clear that En(f) ≥ En+1(f) for each n. Our goal in this
chapter is to prove that En(f)→ 0. We’ll accomplish this by proving:

Theorem 2.1. (The Weierstrass Approximation Theorem, 1885) Let f ∈ C[ a, b ]. Then,
for every ε > 0, there is a polynomial p such that ‖f − p‖ < ε.

It follows from the Weierstrass theorem that, for some sequence of polynomials (qk), we
have ‖f − qk‖ → 0. We may suppose that qk ∈ Pnk where (nk) is increasing. (Why?)
Whence it follows that En(f)→ 0; that is, p∗n ⇒ f . (Why?) This is an important first step
in determining the exact nature of En(f) as a function of f and n. We’ll look for much
more precise information in later sections.

Now there are many proofs of the Weierstrass theorem (a mere three are outlined in
the exercises, but there are hundreds!), and all of them start with one simplification: The
underlying interval [ a, b ] is of no consequence.

Lemma 2.2. If the Weierstrass theorem holds for C[ 0, 1 ], then it also holds for C[ a, b ],
and conversely. In fact, C[ 0, 1 ] and C[ a, b ] are, for all practical purposes, identical: They
are linearly isometric as normed spaces, order isomorphic as lattices, and isomorphic as
algebras (rings).

Proof. We’ll settle for proving only the first assertion; the second is outlined in the exercises
(and uses a similar argument). See Problem 1.

First, notice that the function

σ(x) = a+ (b− a)x, 0 ≤ x ≤ 1,

11
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defines a continuous, one-to-one map from [ 0, 1 ] onto [ a, b ]. Given f ∈ C[ a, b ], it follows
that g(x) = f(σ(x)) defines an element of C[ 0, 1 ]. Moreover,

max
0≤x≤1

|g(x)| = max
a≤t≤b

|f(t)|.

Now, given ε > 0, suppose that we can find a polynomial p such that ‖g − p‖ < ε; in other
words, suppose that

max
0≤x≤1

∣∣f(a+ (b− a)x
)
− p(x)

∣∣ < ε.

Then,

max
a≤t≤b

∣∣∣∣f(t)− p
(
t− a
b− a

)∣∣∣∣ < ε.

(Why?) But if p(x) is a polynomial in x, then q(t) = p
(
t−a
b−a

)
is a polynomial in t satisfying

‖f − q‖ < ε.
The proof of the converse is entirely similar: If g(x) is an element of C[ 0, 1 ], then

f(t) = g
(
t−a
b−a

)
, a ≤ t ≤ b, defines an element of C[ a, b ]. Moreover, if q(t) is a polynomial

in t approximating f(t), then p(x) = q(a + (b − a)x) is a polynomial in x approximating
g(x). The remaining details are left as an exercise.

The point to our first result is that it suffices to prove the Weierstrass theorem for any
interval we like; [ 0, 1 ] and [−1, 1 ] are popular choices, but it hardly matters which interval
we use.

Bernstein’s Proof

The proof of the Weierstrass theorem we present here is due to the great Russian math-
ematician S. N. Bernstein in 1912. Bernstein’s proof is of interest to us for a variety of
reasons; perhaps most important is that Bernstein actually displays a sequence of polyno-
mials that approximate a given f ∈ C[ 0, 1 ]. Moreover, as we’ll see later, Bernstein’s proof
generalizes to yield a powerful, unifying theorem, called the Bohman-Korovkin theorem (see
Theorem 2.9).

If f is any bounded function on [ 0, 1 ], we define the sequence of Bernstein polynomials
for f by (

Bn(f)
)
(x) =

n∑
k=0

f(k/n) ·
(
n

k

)
xk(1− x)n−k, 0 ≤ x ≤ 1.

Please note that Bn(f) is a polynomial of degree at most n. Also, it’s easy to see that(
Bn(f)

)
(0) = f(0), and

(
Bn(f)

)
(1) = f(1). In general,

(
Bn(f)

)
(x) is an average of the

numbers f(k/n), k = 0, . . . , n. Bernstein’s theorem states that Bn(f) ⇒ f for each f ∈
C[ 0, 1 ]. Surprisingly, the proof actually only requires that we check three easy cases:

f0(x) = 1, f1(x) = x, and f2(x) = x2.

This, and more, is the content of the following lemma.

Lemma 2.3. (i) Bn(f0) = f0 and Bn(f1) = f1.

(ii) Bn(f2) =
(

1− 1
n

)
f2 + 1

nf1, and hence Bn(f2) ⇒ f2.
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(iii)
n∑
k=0

(k
n
− x
)2
(
n

k

)
xk(1− x)n−k =

x(1− x)
n

≤ 1
4n

, if 0 ≤ x ≤ 1.

(iv) Given δ > 0 and 0 ≤ x ≤ 1, let F denote the set of k in {0, . . . , n} for which∣∣∣k
n
− x
∣∣∣ ≥ δ. Then

∑
k∈F

(
n

k

)
xk(1− x)n−k ≤ 1

4nδ2
.

Proof. That Bn(f0) = f0 follows from the binomial formula:

n∑
k=0

(
n

k

)
xk(1− x)n−k = [x+ (1− x)]n = 1.

To see that Bn(f1) = f1, first notice that for k ≥ 1 we have

k

n

(
n

k

)
=

(n− 1) !
(k − 1) ! (n− k) !

=
(
n− 1
k − 1

)
.

Consequently,
n∑
k=0

k

n

(
n

k

)
xk(1− x)n−k = x

n∑
k=1

(
n− 1
k − 1

)
xk−1(1− x)n−k

= x

n−1∑
j=0

(
n− 1
j

)
xj(1− x)(n−1)−j = x.

Next, to compute Bn(f2), we rewrite twice:(
k

n

)2(
n

k

)
=
k

n

(
n− 1
k − 1

)
=

n− 1
n
· k − 1
n− 1

(
n− 1
k − 1

)
+

1
n

(
n− 1
k − 1

)
, if k ≥ 1

=
(

1− 1
n

)(
n− 2
k − 2

)
+

1
n

(
n− 1
k − 1

)
, if k ≥ 2.

Thus,
n∑
k=0

(
k

n

)2(
n

k

)
xk(1− x)n−k

=
(

1− 1
n

) n∑
k=2

(
n− 2
k − 2

)
xk(1− x)n−k +

1
n

n∑
k=1

(
n− 1
k − 1

)
xk(1− x)n−k

=
(

1− 1
n

)
x2 +

1
n
x,

which establishes (ii) because ‖Bn(f2)− f2‖ = 1
n‖f1 − f2‖ → 0 as n→∞.

To prove (iii) we combine the results in (i) and (ii) and simplify. Because ((k/n)−x)2 =
(k/n)2 − 2x(k/n) + x2, we get

n∑
k=0

(
k

n
− x
)2(

n

k

)
xk(1− x)n−k =

(
1− 1

n

)
x2 +

1
n
x− 2x2 + x2

=
1
n
x(1− x) ≤ 1

4n
,
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for 0 ≤ x ≤ 1.
Finally, to prove (iv), note that 1 ≤ ((k/n)− x)2/δ2 for k ∈ F , and hence∑

k∈F

(
n

k

)
xk(1− x)n−k ≤ 1

δ2

∑
k∈F

(k
n
− x
)2
(
n

k

)
xk(1− x)n−k

≤ 1
δ2

n∑
k=0

(k
n
− x
)2
(
n

k

)
xk(1− x)n−k

≤ 1
4nδ2

, from (iii).

Now we’re ready for the proof of Bernstein’s theorem:

Proof. Let f ∈ C[ 0, 1 ] and let ε > 0. Then, because f is uniformly continuous, there is
a δ > 0 such that |f(x) − f(y)| < ε/2 whenever |x − y| < δ. Now we use the previous
lemma to estimate ‖f −Bn(f)‖. First notice that because the numbers

(
n
k

)
xk(1−x)n−k are

nonnegative and sum to 1, we have

|f(x)−Bn(f)(x)| =

∣∣∣∣∣ f(x)−
n∑
k=0

(
n

k

)
f

(
k

n

)
xk(1− x)n−k

∣∣∣∣∣
=

∣∣∣∣∣
n∑
k=0

(
f(x)− f

(
k

n

))(
n

k

)
xk(1− x)n−k

∣∣∣∣∣
≤

n∑
k=0

∣∣∣∣f(x)− f
(
k

n

)∣∣∣∣ (nk
)
xk(1− x)n−k,

Now fix n (to be specified in a moment) and let F denote the set of k in {0, . . . , n} for which
|(k/n) − x| ≥ δ. Then |f(x) − f(k/n)| < ε/2 for k /∈ F , while |f(x) − f(k/n)| ≤ 2‖f‖ for
k ∈ F . Thus, ∣∣f(x)−

(
Bn(f)

)
(x)
∣∣

≤ ε

2

∑
k/∈F

(
n

k

)
xk(1− x)n−k + 2‖f‖

∑
k∈F

(
n

k

)
xk(1− x)n−k

<
ε

2
· 1 + 2‖f‖ · 1

4nδ2
, from (iv) of the Lemma,

< ε, provided that n > ‖f‖/εδ2.

Landau’s Proof

Just because it’s good for us, let’s give a second proof of Weierstrass’s theorem. This one
is due to Landau in 1908. First, given f ∈ C[ 0, 1 ], notice that it suffices to approximate
f − p, where p is any polynomial. (Why?) In particular, by subtracting the linear function
f(0) + x(f(1)− f(0)), we may suppose that f(0) = f(1) = 0 and, hence, that f ≡ 0 outside
[ 0, 1 ]. That is, we may suppose that f is defined and uniformly continuous on all of R.

Again we will display a sequence of polynomials that converge uniformly to f ; this time
we define

Ln(x) = cn

∫ 1

−1

f(x+ t) (1− t2)n dt,
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where cn is chosen so that

cn

∫ 1

−1

(1− t2)n dt = 1.

Note that by our assumptions on f , we may rewrite Ln(x) as

Ln(x) = cn

∫ 1−x

−x
f(x+ t) (1− t2)n dt = cn

∫ 1

0

f(t) (1− (t− x)2)n dt.

Written this way, it’s clear that Ln is a polynomial in x of degree at most n.
We first need to estimate cn. An easy induction argument will convince you that (1 −

t2)n ≥ 1− nt2, and so we get∫ 1

−1

(1− t2)n dt ≥ 2
∫ 1/

√
n

0

(1− nt2) dt =
4

3
√
n
>

1√
n
,

from which it follows that cn <
√
n. In particular, for any 0 < δ < 1,

cn

∫ 1

δ

(1− t2)n dt <
√
n (1− δ2)n → 0 (n→∞),

which is the inequality we’ll need.
Next, let ε > 0 be given, and choose 0 < δ < 1 such that

|f(x)− f(y)| ≤ ε/2 whenever |x− y| ≤ δ.

Then, because cn(1− t2)n ≥ 0 and integrates to 1, we get

|Ln(x)− f(x)| =
∣∣∣∣ cn ∫ 1

−1

[
f(x+ t)− f(x)

]
(1− t2)n dt

∣∣∣∣
≤ cn

∫ 1

−1

|f(x+ t)− f(x)|(1− t2)n dt

≤ ε

2
cn

∫ δ

−δ
(1− t2)n dt+ 4‖f‖ cn

∫ 1

δ

(1− t2)n dt

≤ ε

2
+ 4‖f‖

√
n (1− δ2)n < ε,

provided that n is sufficiently large.

A third proof of the Weierstrass theorem, due to Lebesgue in 1898, is outlined in the
problems at the end of the chapter (see Problem 7). Lebesgue’s proof is of historical in-
terest because it inspired Stone’s version of the Weierstrass theorem, which we’ll discuss in
Chapter 11.

Before we go on, let’s stop and make an observation or two: While the Bernstein poly-
nomials Bn(f) offer a convenient and explicit polynomial approximation to f , they are by
no means the best approximations. Indeed, recall that if f1(x) = x and f2(x) = x2, then
Bn(f2) = (1− 1

n )f2 + 1
nf1 6= f2. Clearly, the best approximation to f2 out of Pn should be

f2 itself whenever n ≥ 2. On the other hand, because we always have

En(f) ≤ ‖f −Bn(f)‖ (why?),

a detailed understanding of Bernstein’s proof will lend insight into the general problem of
polynomial approximation. Our next project, then, is to improve upon our estimate of the
error ‖f −Bn(f)‖.
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Improved Estimates

To begin, we will need a bit more notation. The modulus of continuity of a bounded function
f on the interval [ a, b ] is defined by

ωf (δ) = ωf ([ a, b ]; δ) = sup
{
|f(x)− f(y)| : x, y ∈ [ a, b ], |x− y| ≤ δ

}
for any δ > 0. Note that ωf (δ) is a measure of the “ε” that goes along with δ (in the
definition of uniform continuity); literally, we have written ε = ωf (δ) as a function of δ.

Here are a few easy facts about the modulus of continuity:

Exercise 2.4.

1. We always have |f(x)− f(y)| ≤ ωf ( |x− y| ) for any x 6= y ∈ [ a, b ].

2. If 0 < δ′ ≤ δ, then ωf (δ′) ≤ ωf (δ).

3. f is uniformly continuous if and only if ωf (δ) → 0 as δ → 0+. [Hint: The statement
that |f(x) − f(y)| ≤ ε whenever |x − y| ≤ δ is equivalent to the statement that
ωf (δ) ≤ ε.]

4. If f ′ exists and is bounded on [ a, b ], then ωf (δ) ≤ Kδ for some constant K.

5. We say that f satisfies a Lipschitz condition of order α with constant K, where 0 <
α ≤ 1 and 0 ≤ K < ∞, if |f(x) − f(y)| ≤ K|x − y|α for all x, y. We abbreviate this
statement by writing: f ∈ lipKα. Check that if f ∈ lipKα, then ωf (δ) ≤ Kδα for all
δ > 0.

For the time being, we actually need only one simple fact about ωf (δ):

Lemma 2.5. Let f be a bounded function on [ a, b ] and let δ > 0. Then, ωf (nδ) ≤ nωf (δ)
for n = 1, 2, . . .. Consequently, ωf (λδ) ≤ (1 + λ)ωf (δ) for any λ > 0.

Proof. Given x < y with |x− y| ≤ n δ, split the interval [x, y ] into n pieces, each of length
at most δ. Specifically, if we set zk = x+k(y−x)/n, for k = 0, 1, . . . , n, then |zk−zk−1| ≤ δ
for any k ≥ 1, and so

|f(x)− f(y)| =

∣∣∣∣∣
n∑
k=1

f(zk)− f(zk−1)

∣∣∣∣∣
≤

n∑
k=1

|f(zk)− f(zk−1)|

≤ nωf (δ).

Thus, ωf (nδ) ≤ nωf (δ).
The second assertion follows from the first (and one of our exercises). Given λ > 0,

choose an integer n so that n− 1 < λ ≤ n. Then,

ωf (λδ) ≤ ωf (n δ) ≤ nωf (δ) ≤ (1 + λ)ωf (δ).

We next repeat the proof of Bernstein’s theorem, making a few minor adjustments here
and there.
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Theorem 2.6. For any bounded function f on [ 0, 1 ] we have

‖f −Bn(f)‖ ≤ 3
2
ωf

(
1√
n

)
.

In particular, if f ∈ C[ 0, 1 ], then En(f) ≤ 3
2 ωf ( 1√

n
)→ 0 as n→∞.

Proof. We first do some term juggling:

|f(x)−Bn(f)(x)| =

∣∣∣∣∣
n∑
k=0

(
f(x)− f

(
k

n

))(
n

k

)
xk(1− x)n−k

∣∣∣∣∣
≤

n∑
k=0

∣∣∣∣f(x)− f
(
k

n

)∣∣∣∣ (nk
)
xk(1− x)n−k

≤
n∑
k=0

ωf

( ∣∣∣∣x− k

n

∣∣∣∣ )(nk
)
xk(1− x)n−k

≤ ωf

(
1√
n

) n∑
k=0

[
1 +
√
n

∣∣∣∣x− k

n

∣∣∣∣ ](nk
)
xk(1− x)n−k

= ωf

(
1√
n

) [
1 +

√
n

n∑
k=0

∣∣∣∣x− k

n

∣∣∣∣ (nk
)
xk(1− x)n−k

]
,

where the third inequality follows from Lemma 2.5 (by taking λ =
√
n
∣∣x− k

n

∣∣ and δ =
1√
n

). All that remains is to estimate the sum, and for this we’ll use Cauchy-Schwarz
(and our earlier observations about Bernstein polynomials). Because each of the terms(
n
k

)
xk(1− x)n−k is nonnegative, we have

n∑
k=0

∣∣∣∣x− k

n

∣∣∣∣ (nk
)
xk(1− x)n−k

=
n∑
k=0

∣∣∣∣x− k

n

∣∣∣∣ [(nk
)
xk(1− x)n−k

]1/2
·
[(
n

k

)
xk(1− x)n−k

]1/2

≤

[
n∑
k=0

∣∣∣∣x− k

n

∣∣∣∣2 (nk
)
xk(1− x)n−k

]1/2

·

[
n∑
k=0

(
n

k

)
xk(1− x)n−k

]1/2

≤
[

1
4n

]1/2
=

1
2
√
n
.

Finally,

|f(x)−Bn(f)(x)| ≤ ωf
(

1√
n

)[
1 +

√
n · 1

2
√
n

]
=

3
2
ωf

(
1√
n

)
.

Examples 2.7.

1. If f ∈ lipKα, it follows that ‖f − Bn(f)‖ ≤ 3
2Kn

−α/2 and hence that En(f) ≤
3
2Kn

−α/2.
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2. As a particular case of the first example, consider f(x) =
∣∣x− 1

2

∣∣ on [ 0, 1 ]. Then
f ∈ lip11, and so ‖f −Bn(f)‖ ≤ 3

2 n
−1/2. But, as Rivlin points out (see Remark 3 on

p. 16 of [45]), ‖f−Bn(f)‖ > 1
2 n
−1/2. Thus, we can’t hope to improve on the power of

n in this estimate. Nevertheless, we will see an improvement in our estimate of En(f).

The Bohman-Korovkin Theorem

The real value to us in Bernstein’s approach is that the map f 7→ Bn(f), while providing a
simple formula for an approximating polynomial, is also linear and positive. In other words,

Bn(f + g) = Bn(f) +Bn(g),
Bn(αf) = αBn(f), α ∈ R,
and
Bn(f) ≥ 0 whenever f ≥ 0.

(See Problem 15 for more on this.) As it happens, any positive, linear map T : C[ 0, 1 ] →
C[ 0, 1 ] is automatically continuous!

Lemma 2.8. If T : C[ a, b ]→ C[ a, b ] is both positive and linear, then T is continuous.

Proof. First note that a positive, linear map is also monotone. That is, T satisfies T (f) ≤
T (g) whenever f ≤ g. (Why?) Thus, for any f ∈ C[ a, b ], we have

−f, f ≤ |f | =⇒ −T (f), T (f) ≤ T (|f |);

that is, |T (f)| ≤ T (|f |). But now |f | ≤ ‖f‖ · 1, where 1 denotes the constant 1 function,
and so we get

|T (f)| ≤ T (|f |) ≤ ‖f‖T (1).

Thus,
‖T (f)‖ ≤ ‖f‖ ‖T (1)‖

for any f ∈ C[ a, b ]. Finally, because T is linear, it follows that T is Lipschitz with constant
‖T (1)‖:

‖T (f)− T (g)‖ = ‖T (f − g)‖ ≤ ‖T (1)‖ ‖f − g‖.

Consequently, T is continuous.

Now positive, linear maps abound in analysis, so this is a fortunate turn of events.
What’s more, Bernstein’s theorem generalizes very nicely when placed in this new setting.
The following elegant theorem was proved (independently) by Bohman and Korovkin in,
roughly, 1952.

Theorem 2.9. Let Tn : C[ 0, 1 ] → C[ 0, 1 ] be a sequence of positive, linear maps, and
suppose that Tn(f)→ f uniformly in each of the three cases

f0(x) = 1, f1(x) = x, and f2(x) = x2.

Then, Tn(f)→ f uniformly for every f ∈ C[ 0, 1 ].

The proof of the Bohman-Korovkin theorem is essentially identical to the proof of Bern-
stein’s theorem except, of course, we write Tn(f) in place of Bn(f). For full details, see [12].
Rather than proving the theorem, let’s settle for a quick application.
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Example 2.10. Let f ∈ C[ 0, 1 ] and, for each n, let Ln(f) be the polygonal approximation
to f with nodes at k/n, k = 0, 1, . . . , n. That is, Ln(f) is linear on each subinterval
[ (k − 1)/n, k/n ] and agrees with f at each of the endpoints: Ln(f)(k/n) = f(k/n). Then
Ln(f)→ f uniformly for each f ∈ C[ 0, 1 ]. This is actually an easy calculation all by itself,
but let’s see why the Bohman-Korovkin theorem makes short work of it.

That Ln(f) is positive and linear is (nearly) obvious; that Ln(f0) = f0 and Ln(f1) = f1
are really easy because, in fact, Ln(f) = f for any linear function f . We just need to show
that Ln(f2) ⇒ f2. But a picture will convince you that the maximum distance between
Ln(f2) and f2 on the interval [ (k − 1)/n, k/n ] is at most(

k

n

)2

−
(
k − 1
n

)2

=
2k − 1
n2

≤ 2
n
.

That is, ‖f2 − Ln(f2)‖ ≤ 2/n→ 0 as n→∞.
[Note that Ln is a linear projection from C[ 0, 1 ] onto the subspace of polygonal functions

based on the nodes k/n, k = 0, . . . , n. An easy calculation, similar in spirit to the example
above, will show that ‖f − Ln(f)‖ ≤ 2ωf (1/n) → 0 as n → ∞ for any f ∈ C[ 0, 1 ]. See
Problem 8.]
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Problems

.∗ 1. Define σ : [ 0, 1 ] → [ a, b ] by σ(t) = a + t(b − a) for 0 ≤ t ≤ 1, and define a transfor-
mation Tσ : C[ a, b ]→ C[ 0, 1 ] by (Tσ(f))(t) = f(σ(t)). Prove that Tσ satisfies:

(a) Tσ(f + g) = Tσ(f) + Tσ(g) and Tσ(cf) = c Tσ(f) for c ∈ R.

(b) Tσ(fg) = Tσ(f)Tσ(g). In particular, Tσ maps polynomials to polynomials.

(c) Tσ(f) ≤ Tσ(g) if and only if f ≤ g.

(d) ‖Tσ(f)‖ = ‖f‖.

(e) Tσ is both one-to-one and onto. Moreover, (Tσ)−1 = Tσ−1 .

.∗ 2. Bernstein’s Theorem shows that the polynomials are dense in C[ 0, 1 ]. Using the
results in Problem 1, conclude that the polynomials are also dense in C[ a, b ].

.∗ 3. How do we know that there are non-polynomial elements in C[ 0, 1 ]? In other words,
is it possible that every element of C[ 0, 1 ] agrees with some polynomial on [ 0, 1 ]?

4. Let (Qn) be a sequence of polynomials of degree mn, and suppose that (Qn) converges
uniformly to f on [ a, b ], where f is not a polynomial. Show that mn →∞.

5. Use induction to show that (1 + x)n ≥ 1 + nx, for all n = 1, 2, . . ., whenever x ≥ −1.
Conclude that (1− t2)n ≥ 1− nt2 whenever −1 ≤ t ≤ 1.

A polygonal function is a piecewise linear, continuous function; that is, a continuous function
f : [ a, b ] → R is a polygonal function if there are finitely many distinct points a = x0 <
x1 < · · · < xn = b, called nodes, such that f is linear on each of the intervals [xk−1, xk ],
k = 1, . . . , n.

Fix distinct points a = x0 < x1 < · · · < xn = b in [ a, b ], and let Sn denote the set
of all polygonal functions having nodes at the xk. It’s not hard to see that Sn is a vector
space. In fact, it’s relatively clear that Sn must have dimension exactly n + 1 as there are
n + 1 “degrees of freedom” (each element of Sn is completely determined by its values at
the xk). More convincing, perhaps, is the fact that we can easily display a basis for Sn. (see
Natanson [41]).

∗ 6. (a) Show that Sn is an (n + 1)-dimensional subspace of C[ a, b ] spanned by the
constant function ϕ0(x) = 1 and the “angles” ϕk+1(x) = |x− xk|+ (x− xk) for
k = 0, . . . , n − 1. Specifically, show that each h ∈ Sn can be uniquely written
as h(x) = c0 +

∑n
i=1 ciϕi(x). [Hint: Because each side of the equation is an

element of Sn, it’s enough to show that the system of equations h(x0) = c0 and
h(xk) = c0 + 2

∑k
i=1 ci(xk − xi−1) for k = 1, . . . , n can be solved (uniquely) for

the ci.]

(b) Each element of Sn can be written as
∑n−1
i=1 ai|x − xi| + bx + d for some choice

of scalars a1, . . . , an−1, b, d.

∗ 7. Given f ∈ C[ 0, 1 ], show that f can be uniformly approximated by a polygonal func-
tion. Specifically, given a positive integer n, let Ln(x) denote the unique polygonal
function with nodes at (k/n)nk=0 that agrees with f at each of these nodes. Show that
‖f − Ln‖ is small provided that n is sufficiently large.
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8. (a) Let f be in lipC1; that is, suppose that f satisfies |f(x) − f(y)| ≤ C|x − y| for
some constant C and all x, y in [ 0, 1 ]. In the notation of Problem 7, show that
‖f−Ln‖ ≤ 2C/n. [Hint: Given x in [ k/n, (k+1)/n), check that |f(x)−Ln(x)| =
|f(x)− f(k/n) +Ln(k/n)−Ln(x)| ≤ |f(x)− f(k/n)|+ |f((k+ 1)/n)− f(k/n)|.]

(b) More generally, prove that ‖f − Ln(f)‖ ≤ 2ωf (1/n) → 0 as n → ∞ for any
f ∈ C[ 0, 1 ].

In light of the results in Problems 6 and 7, Lebesgue noted that he could fashion a proof
of Weierstrass’s Theorem provided he could prove that |x − c| can be uniformly approx-
imated by polynomials on any interval [ a, b ]. (Why is this enough?) But thanks to the
result in Problem 1, for this we need only show that |x| can be uniformly approximated by
polynomials on the interval [−1, 1 ].

∗ 9. Here’s an elementary proof that there is a sequence of polynomials (Pn) converging
uniformly to |x| on [−1, 1 ].

(a) Define (Pn) recursively by Pn+1(x) = Pn(x) + [x− Pn(x)2]/2, where P0(x) = 0.
Clearly, each Pn is a polynomial.

(b) Check that 0 ≤ Pn(x) ≤ Pn+1(x) ≤
√
x for 0 ≤ x ≤ 1. Use Dini’s theorem to

conclude that Pn(x) ⇒
√
x on [ 0, 1 ].

(c) Pn(x2) is also a polynomial, and Pn(x2) ⇒ |x| on [−1, 1 ].

10. If f ∈ C[−1, 1 ] is an even function, show that f may be uniformly approximated by
even polynomials (that is, polynomials of the form

∑n
k=0 akx

2k).

11. If f ∈ C[ 0, 1 ] and if f(0) = f(1) = 0, show that the sequence of polynomials∑n
k=0

[(
n
k

)
f(k/n)

]
xk(1 − x)n−k having integer coefficients converges uniformly to f

(where [x] denotes the greatest integer in x). The same trick works for any f ∈ C[ a, b ]
provided that 0 < a < b < 1.

12. If p is a polynomial and ε > 0, prove that there is a polynomial q with rational
coefficients such that ‖p − q‖ < ε on [ 0, 1 ]. Conclude that C[ 0, 1 ] is separable (that
is, C[ 0, 1 ] has a countable dense subset).

13. Let (xi) be a sequence of numbers in (0, 1) such that lim
n→∞

1
n

∑n
i=1 x

k
i exists for every

k = 0, 1, 2, . . .. Show that lim
n→∞

1
n

∑n
i=1 f(xi) exists for every f ∈ C[ 0, 1 ].

14. If f ∈ C[ 0, 1 ] and if
∫ 1

0
xnf(x) dx = 0 for each n = 0, 1, 2, . . ., show that f ≡ 0. [Hint:

Using the Weierstrass theorem, show that
∫ 1

0
f2 = 0.]

. 15. Show that |Bn(f)| ≤ Bn(|f |), and that Bn(f) ≥ 0 whenever f ≥ 0. Conclude that
‖Bn(f)‖ ≤ ‖f‖.

16. If f is a bounded function on [ 0, 1 ], show that Bn(f)(x) → f(x) at each point of
continuity of f .

17. Find Bn(f) for f(x) = x3. [Hint: k2 = (k−1)(k−2)+3(k−1)+1.] The same method
of calculation can be used to show that Bn(f) ∈ Pm whenever f ∈ Pm and n > m.

∗ 18. Let f be continuously differentiable on [ a, b ], and let ε > 0. Show that there is a
polynomial p such that ‖f − p‖ < ε and ‖f ′ − p′‖ < ε.
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19. Suppose that f ∈ C[ a, b ] is twice continuously differentiable and has f ′′ > 0. Prove
that the best linear approximation to f on [ a, b ] is a0 + a1x where a0 = f ′(c),
a1 = [f(a) + f(c) + f ′(c)(a + c)]/2, and where c is the unique solution to f ′(c) =
(f(b)− f(a))/(b− a).

20. Let f : [ a, b ]→ R be a bounded function. Prove that

ωf ([ a, b ]; δ) = sup
{

diam
(
f(I)

)
: I ⊂ [ a, b ], diam(I) ≤ δ

}
where I denotes a closed subinterval of [ a, b ] and where diam(A) denotes the diameter
of the set A.

21. If the graph of f : [ a, b ] → R has a jump of magnitude α > 0 at some point x0 in
[ a, b ], then ωf (δ) ≥ α for all δ > 0.

22. Calculate ωg for g(x) =
√
x.

23. If f ∈ C[ a, b ], show that ωf (δ1 + δ2) ≤ ωf (δ1) + ωf (δ2) and that ωf (δ) ↓ 0 as δ ↓ 0.
Use this to show that ωf is continuous for δ ≥ 0. Finally, show that the modulus of
continuity of ωf is again ωf .

. 24. (a) Let f : [−1, 1 ]→ R. If x = cos θ, where −1 ≤ x ≤ 1, and if g(θ) = f(cos θ), show
that ωg([−π, π ], δ) = ωg([ 0, π ], δ) ≤ ωf ([−1, 1 ]; δ).

(b) If h(x) = f(ax+b) for c ≤ x ≤ d, show that ωh([ c, d ]; δ) = ωf ([ ac+b, ad+b ]; aδ).

25. (a) Let f be continuously differentiable on [ 0, 1 ]. Show that (Bn(f)′) converges
uniformly to f ′ by showing that ‖Bn(f ′)− (Bn+1(f))′ ‖ ≤ ωf ′(1/(n+ 1)).

(b) In order to see why this is of interest, find a uniformly convergent sequence of
polynomials whose derivatives fail to converge uniformly.

[Compare this result with Problem 18.]



Chapter 3

Trigonometric Polynomials

Introduction

A (real) trigonometric polynomial, or trig polynomial for short, is a function of the form

a0 +
n∑
k=1

(
ak cos kx+ bk sin kx

)
, (3.1)

where a0, . . . , an and b1, . . . , bn are real numbers. The degree of a trig polynomial is the
highest frequency occurring in any representation of the form (3.1); thus, (3.1) has degree
n provided that one of an or bn is nonzero. We will use Tn to denote the collection of trig
polynomials of degree at most n, and T to denote the collection of all trig polynomials (i.e.,
the union of the Tn over all n).

It is convenient to take the space of all continuous 2π-periodic functions on R as the
containing space for Tn; a space we denote by C2π. The space C2π has several equivalent
descriptions. For one, it’s obvious that C2π is a subspace of C(R), the space of all continuous
functions on R. But we might also consider C2π as a subspace of C[ 0, 2π ] in the following
way: The 2π-periodic continuous functions on R may be identified with the set of functions
f ∈ C[ 0, 2π ] satisfying f(0) = f(2π). Each such f extends to a 2π-periodic element of
C(R) in an obvious way, and it’s not hard to see that the condition f(0) = f(2π) defines a
(closed) subspace of C[ 0, 2π ]. As a third description, it is often convenient to identify C2π

with the collection C(T), consisting of all continuous real-valued functions on T, where T
denotes the unit circle in the complex plane C. That is, we simply make the identifications

θ ←→ eiθ and f(θ)←→ f(eiθ).

In any case, each f ∈ C2π is uniformly continuous and uniformly bounded on all of R, and
is completely determined by its values on any interval of length 2π. In particular, we may
(and will) endow C2π with the sup norm:

‖f‖ = max
0≤x≤2π

|f(x)| = max
x∈R
|f(x)|.

Our goal in this chapter is to prove what is sometimes called Weierstrass’s second theorem
(also from 1885).

23
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Theorem 3.1. (Weierstrass’s Second Theorem, 1885) Let f ∈ C2π. Then, for every
ε > 0, there exists a trig polynomial T such that ‖f − T‖ < ε.

Ultimately, we will give several different proofs of this theorem. Weierstrass gave a
separate proof of this result in the same paper containing his theorem on approximation by
algebraic polynomials, but it was later pointed out by Lebesgue [38] that the two theorems
are, in fact, equivalent. Lebesgue’s proof is based on several elementary observations. We
will outline these elementary facts, supplying a few proofs here and there, but leaving full
details to the reader.

We first justify the use of the word “polynomial” in the phrase “trig polynomial.”

Lemma 3.2. cosnx and sin(n+ 1)x/ sinx can be written as polynomials of degree exactly
n in cosx for any integer n ≥ 0.

Proof. Using the recurrence formula

cos kx+ cos(k − 2)x = 2 cos(k − 1)x cosx

it’s not hard to see that cos 2x = 2 cos2 x − 1, cos 3x = 4 cos3 x − 3 cosx, and cos 4x =
8 cos4 x − 8 cos2 x + 1. More generally, by induction, cosnx is a polynomial of degree n in
cosx with leading coefficient 2n−1. Using this fact and the identity

sin(k + 1)x− sin(k − 1)x = 2 cos kx sinx

(along with another easy induction argument), it follows that sin(n+ 1)x can be written as
sinx times a polynomial of degree n in cosx with leading coefficient 2n.

Alternatively, notice that by writing (i sinx)2k = (cos2 x− 1)k we have

cosnx = Re [(cosx+ i sinx)n] = Re

[
n∑
k=0

(
n

k

)
(i sinx)k cosn−k x

]

=
[n/2]∑
k=0

(
n

2k

)
(cos2 x− 1)k cosn−2k x.

The coefficient of cosn x in this expansion is then

[n/2]∑
k=0

(
n

2k

)
=

1
2

n∑
k=0

(
n

k

)
= 2n−1.

(The sum of all the binomial coefficients is (1 + 1)n = 2n, but the even or odd terms, taken
separately, sum to exactly half this amount because (1 + (−1))n = 0.)

Similarly,

sin(n+ 1)x = Im
[
(cosx+ i sinx)n+1

]
= Im

[
n+1∑
k=0

(
n+ 1
k

)
(i sinx)k cosn+1−k x

]

=
[n/2]∑
k=0

(
n+ 1
2k + 1

)
(cos2 x− 1)k cosn−2k x sinx,
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where we’ve written (i sinx)2k+1 = i(cos2 x− 1)k sinx. The coefficient of cosn x sinx is

[n/2]∑
k=0

(
n+ 1
2k + 1

)
=

1
2

n+1∑
k=0

(
n+ 1
k

)
= 2n.

Corollary 3.3. Any real trig polynomial (3.1) may be written as P (cosx) +Q(cosx) sinx,
where P and Q are algebraic polynomials of degree at most n and n− 1, respectively. If the
sum (3.1) represents an even function, then it can be written using only cosines.

Corollary 3.4. The collection T , consisting of all trig polynomials, is both a subspace and
a subring of C2π (that is, T is closed under both linear combinations and products). In
other words, T is a subalgebra of C2π.

It’s not hard to see that the procedure we’ve described above can be reversed; that is,
each algebraic polynomial in cosx and sinx can be written in the form (3.1). For example,
4 cos3 x = 3 cosx + cos 3x. But, rather than duplicate our efforts, let’s use a bit of linear
algebra. First, the 2n+ 1 functions

A = { 1, cosx, cos 2x, . . . , cosnx, sinx, sin 2x, . . . , sinnx },

are linearly independent ; the easiest way to see this is to notice that we may define an inner
product on C2π under which these functions are orthogonal. Specifically,

〈f, g〉 =
∫ 2π

0

f(x) g(x) dx = 0, 〈f, f〉 =
∫ 2π

0

f(x)2 dx 6= 0

for any pair of functions f 6= g ∈ A. (We’ll pursue this direction in greater detail later in
the course.) Second, we’ve shown that each element of A lies in the space spanned by the
2n+ 1 functions

B = { 1, cosx, cos2 x, . . . , cosn x, sinx, cosx sinx, . . . , cosn−1 x sinx }.

That is,
Tn ≡ spanA ⊂ spanB.

By comparing dimensions, we have

2n+ 1 = dim Tn = dim(spanA) ≤ dim(spanB) ≤ 2n+ 1,

and hence we must have spanA = spanB. The point here is that Tn is a finite-dimensional
subspace of C2π of dimension 2n + 1, and we may use either one of these sets of functions
as a basis for Tn.

Before we leave these issues behind, let’s summarize the situation for complex trig poly-
nomials; i.e., the case where we allow complex coefficients in equation (3.1). To begin, it’s
clear that every sum of the form (3.1), whether real or complex coefficients are used, can be
written as

n∑
k=−n

cke
ikx, (3.2)

where the ck are complex ; that is, a trig polynomial is actually a polynomial (over C) in
z = eix and z̄ = e−ix:

n∑
k=−n

cke
ikx =

n∑
k=−n

ckz
k =

n∑
k=0

ckz
k +

n∑
k=1

c−kz̄
k.



26 CHAPTER 3. TRIGONOMETRIC POLYNOMIALS

Conversely, every sum of the form (3.2) can be written in the form (3.1), using complex
ak and bk. Thus, the complex trig polynomials of degree at most n form a vector space of
dimension 2n + 1 over C (hence of dimension 2(2n + 1) when considered as a vector space
over R).

But, not every polynomial in z and z̄ represents a real trig polynomial. Rather, the real
trig polynomials are the real parts of the complex trig polynomials. To see this, notice that
(3.2) represents a real-valued function if and only if

n∑
k=−n

cke
ikx =

n∑
k=−n

ckeikx =
n∑

k=−n

c̄−ke
ikx;

that is, we must have ck = c̄−k for each k. In particular, c0 must be real, and hence
n∑

k=−n

cke
ikx = c0 +

n∑
k=1

(ckeikx + c−ke
−ikx)

= c0 +
n∑
k=1

(ckeikx + c̄ke
−ikx)

= c0 +
n∑
k=1

[
(ck + c̄k) cos kx+ i(ck − c̄k) sin kx

]
= c0 +

n∑
k=1

[
2 Re(ck) cos kx− 2 Im(ck) sin kx

]
,

which is of the form (3.1) with ak and bk real.
Conversely, given any real trig polynomial (3.1), we have

a0 +
n∑
k=1

(
ak cos kx+ bk sin kx

)
= a0 +

n∑
k=1

[(
ak − ibk

2

)
eikx +

(
ak + ibk

2

)
e−ikx

]
,

which of of the form (3.2) with ck = c̄−k for each k.
It’s time we returned to approximation theory! Because we’ve been able to identify C2π

with a subspace of C[ 0, 2π ], and because Tn is a finite-dimensional subspace of C2π, we
have

Corollary 3.5. Each f ∈ C2π has a best approximation (on all of R) out of Tn. If f is an
even function, then it has a best approximation which is also even.

Proof. We only need to prove the second claim, so suppose that f ∈ C2π is even and that
T ∗ ∈ Tn satisfies

‖f − T ∗‖ = min
T∈Tn

‖f − T‖.

Then, because f is even, T̃ (x) = T ∗(−x) is also a best approximation to f out of Tn; indeed,

‖f − T̃ ‖ = max
x∈R
|f(x)− T ∗(−x)|

= max
x∈R
|f(−x)− T ∗(x)|

= max
x∈R
|f(x)− T ∗(x)| = ‖f − T ∗‖.
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But now, the even trig polynomial

T̂ (x) =
T̃ (x) + T ∗(x)

2
=
T ∗(−x) + T ∗(x)

2

is also a best approximation out of Tn because

‖f − T̂ ‖ =

∥∥∥∥∥ (f − T̃ ) + (f − T ∗)
2

∥∥∥∥∥ ≤ ‖f − T̃ ‖+ ‖f − T ∗‖
2

= min
T∈Tn

‖f − T‖.

Weierstrass’s Second Theorem

We next give (de La Vallée Poussin’s version of) Lebesgue’s proof of Weierstrass’s second
theorem; specifically, we will deduce the second theorem from the first.

Theorem 3.6. Let f ∈ C2π and let ε > 0. Then, there is a trig polynomial T such that
‖f − T‖ = max x∈R |f(x)− T (x)| < ε.

Proof. We will prove that Weierstrass’s first theorem for C[−1, 1 ] implies his second theorem
for C2π.
Step 1. If f ∈ C2π is even, then f may be uniformly approximated by even trig polynomials.

If f is even, then it’s enough to approximate f on the interval [ 0, π ]. In this case, we
may consider the function g(y) = f(arccos y), −1 ≤ y ≤ 1, in C[−1, 1 ]. By Weierstrass’s
first theorem, there is an algebraic polynomial p(y) such that

max
−1≤y≤1

|f(arccos y)− p(y)| = max
0≤x≤π

|f(x)− p(cosx)| < ε.

But T (x) = p(cosx) is an even trig polynomial! Hence,

‖f − T‖ = max
x∈R
|f(x)− T (x)| < ε.

Let’s agree to abbreviate ‖f − T‖ < ε as f ≈ T + ε.
Step 2. Given f ∈ C2π, there is a trig polynomial T such that 2f(x) sin2 x ≈ T (x) + 2ε.

Each of the functions f(x) + f(−x) and [f(x) − f(−x)] sinx is even. Thus, we may
choose even trig polynomials T1 and T2 such that

f(x) + f(−x) ≈ T1(x) and [f(x)− f(−x)] sinx ≈ T2(x).

Multiplying the first expression by sin2 x, the second by sinx, and adding, we get

2f(x) sin2 x ≈ T1(x) sin2 x+ T2(x) sinx ≡ T3(x),

where T3(x) is still a trig polynomial, and where f ≈ T3 + 2ε because | sinx | ≤ 1.
Step 3. Given f ∈ C2π, there is a trig polynomial T such that 2f(x) cos2 x ≈ T (x) + 2ε.

Repeat Step 2 for f(x−π/2) and translate: We first choose a trig polynomial T4(x) such
that

2f
(
x− π

2

)
sin2 x ≈ T4(x).
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That is,
2f(x) cos2 x ≈ T5(x),

where T5(x) is a trig polynomial.
Finally, by combining the conclusions of Steps 2 and 3, we find that there is a trig

polynomial T6(x) such that f ≈ T6(x) + 2ε.

Just for fun, let’s complete the circle and show that Weierstrass’s second theorem for
C2π implies his first theorem for C[−1, 1 ]. Because it’s possible to give an independent
proof of the second theorem, as we’ll see later, this is a meaningful endeavor.

Theorem 3.7. Given f ∈ C[−1, 1 ] and ε > 0, there exists an algebraic polynomial p such
that ‖f − p‖ < ε.

Proof. Given f ∈ C[−1, 1 ], the function f(cosx) is an even function in C2π. By our proof
of Weierstrass’s second theorem (Step 1 of the proof), we may approximate f(cosx) by an
even trig polynomial:

f(cosx) ≈ a0 + a1 cosx+ a2 cos 2x+ · · ·+ an cosnx.

But, as we’ve seen, cos kx can be written as an algebraic polynomial in cosx. Hence, there
is some algebraic polynomial p such that f(cosx) ≈ p(cosx). That is,

max
0≤x≤π

|f(cosx)− p(cosx)| = max
−1≤t≤1

|f(t)− p(t)| < ε.

The algebraic polynomials Tn(x) satisfying

Tn(cosx) = cosnx, for n = 0, 1, 2, . . . ,

are called the Chebyshev polynomials of the first kind. Please note that this formula uniquely
defines Tn as a polynomial of degree exactly n (with leading coefficient 2n−1), and hence
uniquely determines the values of Tn(x) for |x| > 1, too. The algebraic polynomials Un(x)
satisfying

Un(cosx) =
sin(n+ 1)x

sinx
, for n = 0, 1, 2, . . . ,

are called the Chebyshev polynomials of the second kind. Likewise, note that this formula
uniquely defines Un as a polynomial of degree exactly n (with leading coefficient 2n).

We will discover many intriguing properties of the Chebyshev polynomials in the next
chapter. For now, let’s settle for just one: The recurrence formula we gave earlier

cosnx = 2 cosx cos(n− 1)x− cos(n− 2)x

now becomes
Tn(x) = 2xTn−1(x)− Tn−2(x), n ≥ 2,

where T0(x) = 1 and T1(x) = x. This recurrence relation (along with the initial cases T0 and
T1) may be taken as a definition for the Chebyshev polynomials of the first kind. At any rate,
it’s now easy to list any number of the Chebyshev polynomials Tn; for example, the next few
are T2(x) = 2x2−1, T3(x) = 4x3−3x, T4(x) = 8x4−8x2 +1, and T5(x) = 16x5−20x3 +5x.
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Problems

. 1. (a) Use induction to show that | sinnx/ sinx| ≤ n for all 0 ≤ x ≤ π. [Hint: sin(n +
1)x = sinnx cosx+ sinx cosnx.]

(b) By examining the proof of (a), show that | sinnx/ sinx| = n can only occur when
x = 0 or x = π.

2. Let f ∈ C2π be continuously differentiable and let ε > 0. Show that there is a trig
polynomial T such that ‖f − T‖ < ε and ‖f ′ − T ′‖ < ε.

. 3. Establish the following properties of Tn(x).

(i) Show that the zeros of Tn(x) are real, simple, and lie in the open interval (−1, 1).

(ii) We know that |Tn(x)| ≤ 1 for −1 ≤ x ≤ 1, but when does equality occur; that
is, when is |Tn(x)| = 1 on [−1, 1 ]?

(iii) Evaluate
∫ 1

−1

Tn(x)Tm(x)
dx√

1− x2
.

(iv) Show that T ′n(x) = nUn−1(x).

(v) Show that Tn is a solution to (1− x2)y′′ − xy′ + n2y = 0.

4. Find analogues of properties (i)–(vi) in Problem 3 (if possible) for Un(x), the Cheby-
shev polynomials of the second kind.

5. Show that the Chebyshev polynomials (Tn) are linearly independent over any interval
[ a, b ] in R. Is the same true of the sequence (Un)?
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Chapter 4

Characterization of Best
Approximation

Introduction

We next discuss Chebyshev’s solution to the problem of best polynomial approximation
from 1854. Given that there was no reason to believe that the problem even had a solution,
let alone a unique solution, Chebyshev’s accomplishment should not be underestimated.
Chebyshev might very well have been able to prove Weierstrass’s result—30 years early—
had the thought simply occurred to him! Chebyshev’s original papers are apparently rather
sketchy. It wasn’t until 1903 that full details were given by Kirchberger [34]. Curiously,
Kirchberger’s proofs foreshadow very modern techniques such as convexity and separation
arguments. The presentation we’ll give owes much to Haar and to de La Vallée Poussin
(both from around 1918).

We begin with an easy observation:

Lemma 4.1. Let f ∈ C[ a, b ] and let p = p∗n be a best approximation to f out of Pn. Then
there are at least two distinct points x1, x2 ∈ [ a, b ] such that

f(x1)− p(x1) = −(f(x2)− p(x2)) = ‖f − p‖.

That is, f − p attains each of the values ±‖f − p‖.

Proof. Let’s write E = En(f) = ‖f − p‖ = max a≤x≤b |f(x)− p(x)|. If the conclusion of the
Lemma is false, then we might as well suppose that f(x1) − p(x1) = E, for some x1, but
that

e = min
a≤x≤b

(f(x)− p(x)) > −E.

In particular, E + e 6= 0 and so q = p+ (E + e)/2 is an element of Pn with q 6= p. We claim
that q is a better approximation to f than p. Here’s why:

E −
(
E + e

2

)
≥ f(x)− p(x)−

(
E + e

2

)
≥ e−

(
E + e

2

)
,

or (
E − e

2

)
≥ f(x)− q(x) ≥ −

(
E − e

2

)
.
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That is,

‖f − q‖ ≤
(
E − e

2

)
< E = ‖f − p‖,

a contradiction.

Corollary 4.2. The best approximating constant to f ∈ C[ a, b ] is

p∗0 =
1
2

 max
a≤x≤b

f(x) + min
a≤x≤b

f(x)

 ,
and

E0(f) =
1
2

 max
a≤x≤b

f(x)− min
a≤x≤b

f(x)

 .
Proof. Exercise.

Now all of this is meant as motivation for the general case, which essentially repeats
the observation of our first Lemma inductively. A little experimentation will convince you
that a best linear approximation, for example, would imply the existence of three (or more)
points at which f − p∗1 alternates between ±‖f − p∗1‖.

A bit of notation will help us set up the argument for the general case: Given g in
C[ a, b ], we’ll say that x ∈ [ a, b ] is a (+) point for g (respectively, a (−) point for g) if
g(x) = ‖g‖ (respectively, g(x) = −‖g‖). A set of distinct point a ≤ x0 < x1 < · · · < xn ≤ b
will be called an alternating set for g if the xi are alternately (+) points and (−) points;
that is, if

|g(xi)| = ‖g‖, i = 0, 1, . . . , n,

and
g(xi) = −g(xi−1), i = 1, 2, . . . , n.

Using this notation, we will be able to characterize the polynomial of best approximation.
Our first result is where all the fighting takes place:

Theorem 4.3. Let f ∈ C[ a, b ], and suppose that p = p∗n is a best approximation to f out
of Pn. Then, there is an alternating set for f − p consisting of at least n+ 2 points.

Proof. If f ∈ Pn, there’s nothing to show. (Why?) Thus, we may suppose that f /∈ Pn and,
hence, that E = En(f) = ‖f − p‖ > 0.

Now consider the (uniformly) continuous function ϕ = f − p. We may partition [ a, b ]
by way of a = t0 < t1 < · · · < tk = b into sufficiently small intervals so that

|ϕ(x)− ϕ(y)| < E/2 whenever x, y ∈ [ ti, ti+1 ].

Here’s why we’d want to do such a thing: If [ ti, ti+1 ] contains a (+) point for ϕ = f − p,
then ϕ is positive on all of [ ti, ti+1 ]. Indeed,

x, y ∈ [ ti, ti+1 ] and ϕ(x) = E =⇒ ϕ(y) > E/2 > 0. (4.1)

Similarly, if [ ti, ti+1 ] contains a (−) point for ϕ, then ϕ is negative on all of [ ti, ti+1 ].
Consequently, no interval [ ti, ti+1 ] can contain both (+) points and (−) points.
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Call [ ti, ti+1 ] a (+) interval (respectively, a (−) interval) if it contains a (+) point
(respectively, a (−) point) for ϕ = f − p. Notice that no (+) interval can even touch a
(−) interval. In other words, a (+) interval and a (−) interval must be strictly separated
(by some interval containing a zero for ϕ).

We now relabel the (+) and (−) intervals from left to right, ignoring the “neither”
intervals. There’s no harm in supposing that the first signed interval is a (+) interval.
Thus, we suppose that our relabeled intervals are written

I1, I2, . . . , Ik1 (+) intervals,
Ik1+1, Ik1+2, . . . , Ik2 (−) intervals,
. . . . . . . . . . . . . . . . . . . . .
Ikm−1+1, Ik1+2, . . . , Ikm (−1)m−1 intervals,

where Ik1 is the last (+) interval before we reach the first (−) interval, Ik1+1. And so on.
For later reference, we let S denote the union of all the signed intervals; that is, S =⋃km

j=1 Ij , and we let N denote the union of all the “neither” intervals. Thus, S and N are
compact sets with S ∪N = [ a, b ] (note that while S and N aren’t quite disjoint, they are
at least nonoverlapping—their interiors are disjoint).

Our goal here is to show that m ≥ n + 2. (So far we only know that m ≥ 2!) Let’s
suppose that m < n+ 2 and see what goes wrong.

Because any (+) interval is strictly separated from any (−) interval, we can find points
z1, . . . , zm−1 ∈ N such that

max Ik1 < z1 < min Ik1+1

max Ik2 < z2 < min Ik2+1

. . . . . . . . . . . . . . . . . . . . . . . .
max Ikm−1 < zm−1 < min Ikm−1+1

And now we construct the offending polynomial:

q(x) = (z1 − x)(z2 − x) · · · (zm−1 − x).

Notice that q ∈ Pn because m− 1 ≤ n. (Here is the only use we’ll make of the assumption
m < n + 2!) We’re going to show that p + λq ∈ Pn is a better approximation to f than p,
for some suitable scalar λ.

We first claim that q and f − p have the same sign. Indeed, q has no zeros in any of
the (±) intervals, hence is of constant sign on any such interval. Thus, q > 0 on I1, . . . , Ik1
because each (zj−x) > 0 on these intervals; q < 0 on Ik1+1, . . . , Ik2 because here (z1−x) < 0,
while (zj − x) > 0 for j > 1; and so on.

We next find λ. Let e = max x∈N |f(x)−p(x)|, whereN is the union of all the subintervals
[ ti, ti+1 ] which are neither (+) intervals nor (−) intervals. Then, e < E. (Why?) Now
choose λ > 0 so that λ‖q‖ < min{E−e, E/2}. We claim that p+λq is a better approximation
to f than p. One case is easy: If x ∈ N , then

|f(x)− (p(x) + λq(x))| ≤ |f(x)− p(x)|+ λ|q(x)| ≤ e+ λ‖q‖ < E.

On the other hand, if x /∈ N , then x is in either a (+) interval or a (−) interval. In particular,
from equation (4.1), we know that |f(x)− p(x)| > E/2 > λ‖q‖ and, hence, that f(x)− p(x)
and λq(x) have the same sign. Thus,

|f(x)− (p(x) + λq(x))| = |f(x)− p(x)| − λ|q(x)|
≤ E − λ min

x∈S
|q(x)| < E,
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because q is nonzero on S. This contradiction finishes the proof. (Phew!)

Remarks 4.4.

1. It should be pointed out that the number n+ 2 here is actually 1 + dimPn.

2. Notice, too, that if f − p∗n alternates in sign n + 2 times, then f − p∗n must have at
least n+1 zeros. Thus, p∗n actually agrees with f (or “interpolates” f) at n+1 points.

We’re now ready to establish the uniqueness of the polynomial of best approximation.
Because the norm in C[ a, b ] is not strictly convex, this is a somewhat unexpected (but
welcome!) result.

Theorem 4.5. Let f ∈ C[ a, b ]. Then, the polynomial of best approximation to f out of Pn
is unique.

Proof. Suppose that p, q ∈ Pn both satisfy ‖f − p‖ = ‖f − q‖ = En(f) = E. Then, as
we’ve seen, their average r = (p + q)/2 ∈ Pn is also best: ‖f − r‖ = E because f − r =
(f − p)/2 + (f − q)/2.

By Theorem 4.3, f − r has an alternating set x0, x1, . . . , xn+1, containing n+ 2 points.
Thus, for each i,

(f − p)(xi) + (f − q)(xi) = ±2E (alternating),

while
−E ≤ (f − p)(xi), (f − q)(xi) ≤ E.

But this means that

(f − p)(xi) = (f − q)(xi) = ±E (alternating)

for each i. (Why?) That is, x0, x1, . . . , xn+1 is an alternating set for both f − p and f − q.
In particular, the polynomial q− p = (f − p)− (f − q) has n+ 2 zeros! Because q− p ∈ Pn,
we must have p = q.

Finally, we come full circle:

Theorem 4.6. Let f ∈ C[ a, b ], and let p ∈ Pn. If f − p has an alternating set containing
n+ 2 (or more) points, then p is the best approximation to f out of Pn.

Proof. Let x0, x1, . . . , xn+1 be an alternating set for f − p, and suppose that some q ∈ Pn
is a better approximation to f than p; that is, ‖f − q‖ < ‖f − p‖. In particular, then, we
must have

|f(xi)− p(xi)| = ‖f − p‖ > ‖f − q‖ ≥ |f(xi)− q(xi)|

for each i = 0, 1, . . . , n + 1. Now the inequality |a| > |b| implies that a and a − b have the
same sign (why?), hence q − p = (f − p) − (f − q) alternates in sign n + 2 times (because
f − p does). But then, q − p would have at least n+ 1 zeros. Because q − p ∈ Pn, we must
have q = p, which is a contradiction. Thus, p is the best approximation to f out of Pn.
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Example 4.7. (Rivlin [45]) While an alternating set for f − p∗n is supposed to have at
least n+ 2 points, it may well have more than n+ 2 points; thus, alternating sets need not
be unique. For example, consider the function f(x) = sin 4x on [−π, π ]. Because there are
8 points where f alternates between ±1, it follows that p∗0 = 0 and that there are 4×4 = 16
different alternating sets consisting of exactly 2 points (not to mention all those with more
than 2 points). In addition, notice that we actually have p∗1 = · · · = p∗6 = 0, but that p∗7 6= 0.
(Why?)

Exercise 4.8. Show that y = x− 1/8 is the best linear approximation to y = x2 on [ 0, 1 ].

Essentially repeating the proof given for Theorem 4.6 yields a lower bound for En(f).

Theorem 4.9. (de La Vallée Poussin) Let f ∈ C[ a, b ], and suppose that q ∈ Pn is such
that f(xi)− q(xi) alternates in sign at n+ 2 points a ≤ x0 ≤ x1 ≤ . . . ≤ xn+1 ≤ b. Then

En(f) ≥ min
i=0,...,n+1

|f(xi)− q(xi)|.

Proof. If the inequality fails, then the best approximation p = p∗n would satisfy

max
0≤i≤n+1

|f(xi)− p(xi)| ≤ En(f) < min
0≤i≤n+1

|f(xi)− q(xi)|.

Now we could repeat (essentially) the same argument used in the proof of Theorem 4.6 to
arrive at a contradiction. The details are left as an exercise.

Even for relatively simple functions, the problem of actually finding the polynomial of
best approximation is genuinely difficult (even computationally). We next discuss one such
problem, and an important one, that Chebyshev was able to solve.

Problem 1. Find the polynomial p∗n−1 ∈ P∗n−1 of degree at most n− 1 that best approxi-
mates f(x) = xn on the interval [−1, 1 ]. (This particular choice of interval makes for a tidy
solution; we’ll discuss the general situation later.)

Because p∗n−1 is to minimize max |x|≤1 |xn − p∗n−1(x)|, our first problem is equivalent to:

Problem 2. Find the monic polynomial of degree n which deviates least from 0 on [−1, 1 ].
In other words, find the monic polynomial of degree n of smallest norm in C[−1, 1 ].

We’ll give two solutions to this problem (which we know has a unique solution, of course).
First, let’s simplify our notation. We write

p(x) = xn − p∗n−1(x) (the solution),

and
M = ‖p‖ = En−1(xn; [−1, 1 ]).

All we know about p is that it has an alternating set −1 ≤ x0 < x1 < · · · < xn ≤ 1
containing (n − 1) + 2 = n + 1 points; that is, |p(xi)| = M and p(xi+1) = −p(xi) for all i.
Using this tiny bit of information, Chebyshev was led to compare the polynomials p2 and
p ′. Watch closely!
Step 1. At any xi in (−1, 1), we must have p ′(xi) = 0 (because p(xi) is a relative extreme
value for p). But, p ′ is a polynomial of degree n − 1 and so can have at most n − 1 zeros.
Thus, we must have

xi ∈ (−1, 1) and p ′(xi) = 0, for i = 1, . . . , n− 1,
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(in fact, x1, . . . , xn−1 are all the zeros of p ′) and

x0 = −1, p ′(x0) 6= 0, xn−1 = 1, p ′(xn−1) 6= 0.

Step 2. Now consider the polynomial M2− p2 ∈ P2n. We know that M2− (p(xi))2 = 0 for
i = 0, 1, . . . , n, and that M2 − p2 ≥ 0 on [−1, 1 ]. Thus, x1, . . . , xn−1 must be double roots
(at least) of M2 − p2. But this makes for 2(n− 1) + 2 = 2n roots already, so we must have
them all. Hence, x1, . . . , xn−1 are double roots, x0 and xn are simple roots, and these are
all the roots of M2 − p2.
Step 3. Next consider (p ′)2 ∈ P2(n−1). We know that (p ′)2 has a double root at each
of x1, . . . , xn−1 (and no other roots), hence (1 − x2)(p ′(x))2 has a double root at each of
x1, . . . , xn−1, and simple roots at x0 and xn. Because (1− x2)(p ′(x))2 ∈ P2n, we’ve found
all of its roots.

Here’s the point to all this “rooting”:
Step 4. Because M2 − (p(x))2 and (1 − x2)(p ′(x))2 are polynomials of the same degree
with the same roots, they are, up to a constant multiple, the same polynomial! It’s easy to
see what constant, too: The leading coefficient of p is 1 while the leading coefficient of p ′ is
n; thus,

M2 − (p(x))2 =
(1− x2)(p ′(x))2

n2
.

After tidying up,
p ′(x)√

M2 − (p(x))2
=

n√
1− x2

.

We really should have an extra ± here, but we know that p ′ is positive on some interval;
we’ll simply assume that it’s positive on [−1, x1 ]. Now, upon integrating,

arccos
(
p(x)
M

)
= n arccosx+ C;

that is,
p(x) = M cos(n arccosx+ C).

But p(−1) = −M (because p ′(−1) ≥ 0), so

cos(nπ + C) = −1 =⇒ C = mπ (with n+m odd)
=⇒ p(x) = ±M cos(n arccosx).

Look familiar? Because we know that cos(n arccosx) is a polynomial of degree n with leading
coefficient 2n−1 (i.e., the n-th Chebyshev polynomial Tn), the solution to our problem is

p(x) = 2−n+1 Tn(x).

And because |Tn(x)| ≤ 1 for |x| ≤ 1 (why?), the minimum norm is M = 2−n+1.

Next we give a “fancy” solution, based on our characterization of best approximations
(Theorem 4.6) and a few simple properties of the Chebyshev polynomials.

Theorem 4.10. For any n ≥ 1, the formula p(x) = xn− 2−n+1 Tn(x) defines a polynomial
p ∈ Pn−1 satisfying

2−n+1 = max
|x|≤1

|xn − p(x)| < max
|x|≤1

|xn − q(x)|

for any other q ∈ Pn−1.
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Proof. We know that 2−n+1 Tn(x) has leading coefficient 1, and so p ∈ Pn−1. Now set
xk = cos((n− k)π/n) for k = 0, 1, . . . , n. Then, −1 = x0 < x1 < · · · < xn = 1 and

Tn(xk) = Tn(cos((n− k)π/n)) = cos((n− k)π) = (−1)n−k.

Because |Tn(x)| = |Tn(cos θ)| = | cosnθ| ≤ 1, for −1 ≤ x ≤ 1, we’ve found an alternating
set for Tn containing n+ 1 points.

In other words, xn − p(x) = 2−n+1 Tn(x) satisfies |xn − p(x)| ≤ 2−n+1 and, for each
k = 0, 1, . . . , n, has xnk − p(xk) = 2−n+1 Tn(xk) = (−1)n−k2−n+1. By our characterization
of best approximations (Theorem 4.6), p must be the best approximation to xn out of
Pn−1.

Corollary 4.11. The monic polynomial of degree exactly n having smallest norm in C[ a, b ]
is

(b− a)n

2n2n−1
· Tn

(
2x− b− a
b− a

)
.

Proof. Exercise. [Hint: If p(x) is a polynomial of degree n with leading coefficient 1, then
p̃(x) = p((2x−b−a)/(b−a)) is a polynomial of degree n with leading coefficient 2n/(b−a)n.
Moreover, max a≤x≤b |p(x)| = max−1≤x≤1 |p̃(x)|.]

Properties of the Chebyshev Polynomials

As we’ve seen, the Chebyshev polynomial Tn(x) is the (unique, real) polynomial of degree
n (having leading coefficient 1 if n = 0, and 2n−1 if n ≥ 1) such that Tn(cos θ) = cosnθ for
all θ. The Chebyshev polynomials have dozens of interesting properties and satisfy all sorts
of curious equations. We’ll catalogue just a few.

C1. Tn(x) = 2xTn−1(x)− Tn−2(x) for n ≥ 2.

Proof. It follows from the trig identity cosnθ = 2 cos θ cos(n− 1)θ − cos(n− 2)θ that
Tn(cos θ) = 2 cos θ Tn−1(cos θ) − Tn−2(cos θ) for all θ; that is, the equation Tn(x) =
2xTn−1(x)−Tn−2(x) holds for all−1 ≤ x ≤ 1. But because both sides are polynomials,
equality must hold for all x.

The next two properties are proved in essentially the same way:

C2. Tm(x) + Tn(x) = 1
2

[
Tm+n(x) + Tm−n(x)

]
for m > n.

C3. Tm(Tn(x)) = Tmn(x).

C4. Tn(x) = 1
2

[ (
x+
√
x2 − 1

)n +
(
x−
√
x2 − 1

)n ].
Proof. First notice that the expression on the right-hand side is actually a polynomial
because, on combining the binomial expansions of (x+

√
x2 − 1 )n and (x−

√
x2 − 1 )n,
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the odd powers of
√
x2 − 1 cancel. Next, for x = cos θ,

Tn(x) = Tn(cos θ) = cosnθ =
1
2

(einθ + e−inθ)

=
1
2

[
(cos θ + i sin θ)n + (cos θ − i sin θ)n

]
=

1
2

[ (
x+ i

√
1− x2

)n +
(
x− i

√
1− x2

)n ]
=

1
2

[ (
x+

√
x2 − 1

)n +
(
x−

√
x2 − 1

)n ]
.

We’ve shown that these two polynomials agree for |x| ≤ 1, hence they must agree for
all x (real or complex, for that matter).

For real x with |x| ≥ 1, the expression 1
2

[
(x +

√
x2 − 1 )n + (x −

√
x2 − 1 )n

]
equals

cosh(n cosh−1 x). In other words, we have

C5. Tn(coshx) = coshnx for all real x.

The next property also follows from property C4.

C6. Tn(x) ≤
(
|x|+

√
x2 − 1

)n for |x| ≥ 1.

An approach similar to the proof of property C4 allows us to write xn in terms of the
Chebyshev polynomials T0, T1, . . . , Tn.

C7. For n odd, 2nxn =
[n/2]∑
k=0

(
n

k

)
2Tn−2k(x); for n even, 2T0 should be replaced by T0.

Proof. For −1 ≤ x ≤ 1,

2nxn = 2n(cos θ)n = (eiθ + e−iθ)n

= einθ +
(
n

1

)
ei(n−2)θ +

(
n

2

)
ei(n−4)θ + · · ·

· · ·+
(

n

n− 2

)
e−i(n−4)θ +

(
n

n− 1

)
e−i(n−2)θ + e−inθ

= 2 cosnθ +
(
n

1

)
2 cos(n− 2)θ +

(
n

2

)
2 cos(n− 4)θ + · · ·

= 2Tn(x) +
(
n

1

)
2Tn−2(x) +

(
n

2

)
2Tn−4(x) + · · · ,

where, if n is even, the last term in this last sum is
(

n
[n/2]

)
T0 (because the central term

in the binomial expansion, namely
(

n
[n/2]

)
=
(

n
[n/2]

)
T0, isn’t doubled in this case).

C8. The zeros of Tn are x(n)
k = cos((2k − 1)π/2n), k = 1, . . . , n. They’re real, simple, and

lie in the open interval (−1, 1).
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Proof. Just check! But notice, please, that the zeros are listed here in decreasing order
(because cosine decreases).

C9. Between two consecutive zeros of Tn, there is precisely one root of Tn−1.

Proof. It’s not hard to check that

2k − 1
2n

<
2k − 1

2 (n− 1)
<

2k + 1
2n

,

for k = 1, . . . , n− 1, which means that x(n)
k > x

(n−1)
k > x

(n)
k+1.

C10. Tn and Tn−1 have no common zeros.

Proof. Although this is immediate from property C9, there’s another way to see it:
Tn(x0) = 0 = Tn−1(x0) implies that Tn−2(x0) = 0 by property C1. Repeating this
observation, we would have Tk(x0) = 0 for every k < n, including k = 0. No good!
T0(x) = 1 has no zeros.

C11. The set {x(n)
k : 1 ≤ k ≤ n, n = 1, 2, . . .} is dense in [−1, 1 ].

Proof. Because cosx is (strictly) monotone on [ 0, π ], it’s enough to know that the
set {(2k − 1)π/2n}k,n is dense in [ 0, π ], and for this it’s enough to know that {(2k −
1)/2n}k,n is dense in [ 0, 1 ]. (Why?) But

2k − 1
2n

=
k

n
− 1

2n
≈ k

n

for n large; that is, the set {(2k−1)/2n}k,n is dense among the rationals in [ 0, 1 ].

It’s interesting to note here that the distribution of the roots {x(n)
k }k,n can be estimated

(see Natanson [41, Vol. I, pp. 48–51]). For large n, the number of roots of Tn that lie in an
interval [x, x+ ∆x ] ⊂ [−1, 1 ] is approximately

n∆x
π
√

1− x2
.

In particular, for n large, the roots of Tn are “thickest” near the endpoints ±1.

In probabilistic terms, this means that if we assign equal probability to each of the
roots x(n)

0 , . . . , x
(n)
n (that is, if we think of each root as the position of a point with mass

1/(n+ 1)), then the density of this probability distribution (or the density of the system of
point masses) at a point x is approximately 1/π

√
1− x2 for large n. In still other words,

this tells us that the probability that a root of Tn lies in the interval [ a, b ] is approximately

1
π

∫ b

a

1√
1− x2

dx.
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C12. The Chebyshev polynomials are mutually orthogonal relative to the weight w(x) =
(1− x2)−1/2 on [−1, 1 ].

Proof. For m 6= n the substitution x = cos θ yields∫ 1

−1

Tn(x)Tm(x)
dx√

1− x2
=
∫ π

0

cosmθ cosnθ dθ = 0,

while for m = n we get∫ 1

−1

T 2
n(x)

dx√
1− x2

=
∫ π

0

cos2 nθ dθ =
{
π if n = 0
π/2 if n > 0.

C13. |T ′n(x)| ≤ n2 for −1 ≤ x ≤ 1, and |T ′n(±1)| = n2.

Proof. For −1 < x < 1 we have

d

dx
Tn(x) =

d
dθ Tn(cos θ)

d
dθ cos θ

=
n sinnθ

sin θ
.

Thus, |T ′n(x)| ≤ n2 because | sinnθ| ≤ n| sin θ| (which can be easily checked by in-
duction, for example). At x = ±1, we interpret this derivative formula as a limit (as
θ → 0 and θ → π) and find that |T ′n(±1)| = n2.

As we’ll see later, each p ∈ Pn satisfies |p ′(x)| ≤ ‖p‖n2 = ‖p‖T ′n(1) for −1 ≤ x ≤ 1, and
this is, of course, best possible. As it happens, Tn(x) has the largest possible rate of growth
outside of [−1, 1 ] among all polynomials of degree n. Specifically:

Theorem 4.12. Let p ∈ Pn and let ‖p‖ = max−1≤x≤1 |p(x)|. Then, for any x0 with
|x0| ≥ 1 and any k = 0, 1, . . . , n we have

|p(k)(x0)| ≤ ‖p‖ |T (k)
n (x0) |,

where p(k) is the k-th derivative of p.

We’ll prove only the case k = 0. In other words, we’ll check that |p(x0)| ≤ ‖p‖ |Tn(x0)|.
The more general case is given in Rivlin [45, Theorem 1.10, p. 31] and uses a similar proof.

Proof. Because all the zeros of Tn lie in (−1, 1), we know that Tn(x0) 6= 0. Thus, we may
consider the polynomial

q(x) =
p(x0)
Tn(x0)

Tn(x) − p(x) ∈ Pn.

If the claim were false, then

‖p‖ <
∣∣∣∣ p(x0)
Tn(x0)

∣∣∣∣ .
Now at each of the points yk = cos(kπ/n), k = 0, 1, . . . , n, we have Tn(yk) = (−1)k and,
hence,

q(yk) = (−1)k
p(x0)
Tn(x0)

− p(yk).
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Because |p(yk)| ≤ ‖p‖, it follows that q alternates in sign at these n+1 points. In particular,
q must have at least n zeros in (−1, 1). But q(x0) = 0, by design, and |x0| ≥ 1. That is,
we’ve found n+ 1 zeros for a polynomial of degree n. So, q ≡ 0; that is,

p(x) =
p(x0)
Tn(x0)

Tn(x).

But then,

|p(1)| =
∣∣∣∣ p(x0)
Tn(x0)

∣∣∣∣ > ‖p‖,
because Tn(1) = Tn(cos 0) = 1, which is a contradiction.

Corollary 4.13. Let p ∈ Pn and let ‖p‖ = max−1≤x≤1 |p(x)|. Then, for any x0 with
|x0| ≥ 1, we have

|p(x0)| ≤ ‖p‖
(
|x0|+

√
x2

0 − 1
)n

.

Rivlin’s proof of Theorem 4.12 in the general case uses the following observation:

C14. For x ≥ 1 and k = 0, 1, . . . , n, we have T (k)
n (x) > 0.

Proof. Exercise. [Hint: It follows from Rolle’s theorem that T (k)
n is never zero for x ≥ 1.

(Why?) Now just compute T (k)
n (1).]

Chebyshev Polynomials in Practice

The following discussion is cribbed from the book Chebyshev Polynomials in Numerical
Analysis by L. Fox and I. B. Parker [18].

Example 4.14. As we’ve seen, the Chebyshev polynomals can be generated by a recurrence
relation. By reversing the procedure, we could solve for xn in terms of T0, T1, . . . , Tn. Here
are the first few terms in each of these relations:

T0(x) = 1
T1(x) = x
T2(x) = 2x2 − 1
T3(x) = 4x3 − 3x
T4(x) = 8x4 − 8x2 + 1
T5(x) = 16x5 − 20x3 + 5x

1 = T0(x)
x = T1(x)
x2 = (T0(x) + T2(x))/2
x3 = (3T1(x) + T3(x))/4
x4 = (3T0(x) + 4T2(x) + T4(x))/8
x5 = (10T1(x) + 5T3(x) + T5(x))/16

Note the separation of even and odd terms in each case. Writing ordinary garden variety
polynomials in their equivalent Chebyshev form has some distinct advantages for numerical
computations. Here’s why:

1− x+ x2 − x3 + x4 =
15
6
T0(x)− 7

4
T1(x) + T2(x)− 1

4
T3(x) +

1
8
T4(x)

(after some simplification). Now we see at once that we can get a cubic approximation to
1− x+ x2 − x3 + x4 on [−1, 1 ] with error at most 1/8 by simply dropping the T4 term on
the right-hand side (because |T4(x)| ≤ 1), whereas simply using 1−x+x2−x3 as our cubic
approximation could cause an error as big as 1. Pretty slick! This gimmick of truncating
the equivalent Chebyshev form is called economization.
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Example 4.15. We next note that a polynomial with small norm on [−1, 1 ] may have
annoyingly large coefficients:

(1− x2)10 = 1− 10x2 + 45x4 − 120x6 + 210x8 − 252x10

+ 210x12 − 120x14 + 45x16 − 10x18 + x20

but in Chebyshev form (look out!):

(1− x2)10 =
1

524,288

{
92,378T0(x)− 167,960T2(x) + 125,970T4(x)

− 77,520T6(x) + 38,760T8(x)− 15,504T10(x)

+ 4,845T12(x)− 1,140T14(x) + 190T16(x)

− 20T18(x) + T20(x)
}

The largest coefficient is now only about 0.3, and the omission of the last three terms
produces a maximum error of about 0.0004. Not bad.

Example 4.16. As a last example, consider the Taylor polynomial ex =
∑n
k=0 x

k/k! +
xn+1eξ/(n+ 1)! (with remainder), where −1 ≤ x, ξ ≤ 1. Taking n = 6, the truncated series
has error no greater than e/7! ≈ 0.0005. But if we “economize” the first six terms, then:

6∑
k=0

xk/k = 1.26606T0(x) + 1.13021T1(x) + 0.27148T2(x) + 0.04427T3(x)

+ 0.00547T4(x) + 0.00052T5(x) + 0.00004T6(x).

The initial approximation already has an error of about 0.0005, so we can certainly drop
the T6 term without any additional error. Even dropping the T5 term causes an error of no
more than 0.001 (or thereabouts). The resulting approximation has a far smaller error than
the corresponding truncated Taylor series of degree 4 which is e/5! ≈ 0.023.

The approach used in our last example has the decided disadvantage that we must first
decide where to truncate the Taylor series—which might converge very slowly. A better
approach would be to write ex as a series involving Chebyshev polynomials directly. That
is, if possible, we first want to write ex =

∑∞
k=0 akTk(x). If the ak are absolutely summable,

it will be very easy to estimate any truncation error. We’ll get some idea on how to go
about this when we talk about “least-squares” approximation. As it happens, such a series
is easy to find (it’s rather like a Fourier series), and its partial sums are remarkably good
uniform approximations.

In fact, for continuous f and any n < 400, we can never hope for more than one extra
decimal place of accuracy by using the best polynomial of degree n in place the the n-th
partial sum of this Chebyshev series!

Uniform Approximation by Trig Polynomials

We end this chapter by summarizing (without proofs) the analogues of Theorems 4.3–4.6
for uniform approximation by trig polynomials. Throughout, f ∈ C2π and Tn denotes the
collection of trig polynomials of degree at most n. We will also write

ETn (f) = min
T∈Tn

‖f − T‖
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(to distinguish this distance from En(f)).

T1. f has a best approximation T ∗ ∈ Tn.

T2. f −T ∗ has an alternating set containing 2n+2 (or more) points in [ 0, 2π). (Note here
that 2n+ 2 = 1 + dim Tn.)

T3. T ∗ is unique.

T4. If T ∈ Tn is such that f − T has an alternating set containing 2n + 2 or more points
in [ 0, 2π), then T = T ∗.

The proofs of T1–T4 are very similar to the corresponding results for algebraic polyno-
mials. As you might imagine, T2 is where all the fighting takes place, and there are a few
technical difficulties to cope with. Nevertheless, we’ll swallow these facts whole and apply
them with a clear conscience to a few examples.

Example 4.17. For m > n, the best approximation to f(x) = A cosmx+B sinmx out of
Tn is 0!

Proof. We may write f(x) = R cosm(x − x0) for some R and x0. (How?) Now we need
only display a sufficiently large alternating set for f (in some interval of length 2π).

Setting xk = x0 + kπ/m, k = 1, 2, . . . , 2m, we get f(xk) = R cos kπ = R(−1)k and
xk ∈ (x0, x0 + 2π]. Because m > n, it follows that 2m ≥ 2n+ 2.

Example 4.18. The best approximation to

f(x) = a0 +
n+1∑
k=1

(
ak cos kx+ bk sin kx

)
out of Tn is

T (x) = a0 +
n∑
k=1

(
ak cos kx+ bk sin kx

)
,

and ETn (f) = ‖f − T‖ =
√
a2
n+1 + b2n+1 .

Proof. By our last example, the best approximation to f − T out of Tn is 0, hence T must
be the best approximation to f . (Why?) The last assertion is easy to check: Because we
can always write A cosmx + B sinmx =

√
A2 +B2 · cosm(x − x0), for some x0, it follows

that ‖f − T‖ =
√
a2
n+1 + b2n+1 .

Finally, let’s make a simple connection between the two types of polynomial approxima-
tion:

Theorem 4.19. Let f ∈ C[−1, 1 ] and define ϕ ∈ C2π by ϕ(θ) = f(cos θ). Then,

En(f) = min
p∈Pn

‖f − p‖ = min
T∈Tn

‖ϕ− T‖ ≡ ETn (ϕ).



44 CHAPTER 4. CHARACTERIZATION OF BEST APPROXIMATION

Proof. Suppose that p∗(x) =
∑n
k=0 akx

k is the best approximation to f out of Pn. Then,
T̂ (θ) = p∗(cos θ) is in Tn and, clearly,

max
−1≤x≤1

|f(x)− p∗(x)| = max
0≤θ≤2π

|f(cos θ)− p∗(cos θ)|.

Thus, En(f) = ‖f − p∗‖ = ‖ϕ− T̂ ‖ ≥ minT∈Tn ‖ϕ− T‖ = ETn (ϕ).
On the other hand, because ϕ is even, we know that T ∗, its best approximation out of Tn,

is also even. Thus, T ∗(θ) = q(cos θ) for some algebraic polynomial q ∈ Pn. Consequently,
ETn (ϕ) = ‖ϕ− T ∗‖ = ‖f − q‖ ≥ min p∈Pn ‖f − p‖ = En(f).

Remarks 4.20.

1. Once we know that min p∈Pn ‖f − p‖ = minT∈Tn ‖ϕ−T‖, it follows that we must also
have T ∗(θ) = p∗(cos θ).

2. Each even ϕ ∈ C2π corresponds to an f ∈ C[−1, 1 ] by setting f(x) = ϕ(arccosx).
The conclusions of Theorem 4.19 and Remark 1 hold in this case, too.

3. Whenever we speak of even trig polynomials, the Chebyshev polynomials are lurking
somewhere in the background. Indeed, let T (θ) be an even trig polynomial, write
x = cos θ, as usual, and consider the following cryptic equation:

T (θ) =
n∑
k=0

ak cos kθ =
n∑
k=0

akTk(cos θ) = p(cos θ),

where p(x) =
∑n
k=0 akTk(x) ∈ Pn.
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Problems

. 1. Prove Corollary 4.2.

. 2. Show that the polynomial of degree n having leading coefficient 1 and deviating least
from 0 on the interval [ a, b ] is given by

(b− a)n

22n−1
Tn

(
2x− b− a
b− a

)
.

Is this solution unique? Explain.

. 3. Establish the following properties of Tn(x).

(i) |Tn(x)| > 1 whenever |x| > 1.

(ii) Tm(x) + Tn(x) = 1
2

[
Tm+n(x) + Tm−n(x)

]
for m > n.

(iii) Tm(Tn(x)) = Tmn(x).

(iv) Show that Tn is a solution to (1− x2)y′′ − xy′ + n2y = 0.

(v) Re
(∑∞

n=0 t
neinθ

)
=
∑∞
n=0 t

n cosnθ =
1− t cos θ

1− 2t cos θ + t2
for −1 < t < 1; that is,∑∞

n=0 t
nTn(x) =

1− tx
1− 2tx+ t2

(this is a generating function for Tn; it’s closely

related to the Poisson kernel).

4. Find analogues of properties C1–C13 and properties (i)–(v) in Problem 3 (if possible)
for Un(x), the Chebyshev polynomials of the second kind.

. 5. Show that every p ∈ Pn has a unique representation as p = a0 + a1T1 + · · · + anTn.
Find this representation in the case p(x) = xn. [Hint: Using the recurrence formula
2xTn−1(x) = Tn(x) + Tn−2(x), find representations for 2x2, 4x3, 8x4, etc.]

6. Let f : X → Y be a continuous map from a metric space X onto a metric space Y .
If D is dense in X, show that f(D) is dense in Y . Use this result to prove that the
zeros of the Chebyshev polynomials are dense in [−1, 1 ].

7. Show that A cosmx+B sinmx = R cosm(x−x0) = R sinm(x−x1) for appropriately
chosen values R, x0, and x1.

8. If p is a polynomial on [ a, b ] of degree n having leading coefficient an > 0, then
‖p‖ ≥ an(b − a)n/22n−1. If b − a ≥ 4, then no polynomial of degree exactly n
with integer coefficients can satisfy ‖p‖ < 2. (Compare this with Problem 11 from
Chapter 2.)

9. Given p ∈ Pn, show that |p(x)| ≤ ‖p‖ |Tn(x)| for |x| > 1.

10. If p ∈ Pn with ‖p‖ = 1 on [−1, 1 ], and if |p(xi)| = 1 at n+ 1 distinct point x0, . . . , xn
in [−1, 1 ], show that either p = ±1, or else p = ±Tn. [Hint: One approach is to
compare the polynomials 1− p2 and (1− x2)(p ′)2.]

11. Compute T (k)
n (1) for k = 0, 1, . . . , n, where T (k)

n is the k-th derivative of Tn. For x ≥ 1
and k = 0, 1, . . . , n, show that T (k)

n (x) > 0.
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Chapter 5

A Brief Introduction to
Interpolation

Lagrange Interpolation

Our goal in this chapter is to prove the following result (as well as discuss its ramifications).
In fact, this result is so fundamental that we will present three proofs!

Theorem 5.1. Let x0, x1, . . . , xn be distinct points and let y0, y1, . . . , yn be arbitrary points
in R. Then there exists a unique polynomial p ∈ Pn satisfying p(xi) = yi, i = 0, 1, . . . , n.

First notice that uniqueness is obvious. Indeed, if two polynomials p, q ∈ Pn agree at
n+ 1 points, then p ≡ q. (Why?) The real work comes in proving existence.

First Proof. (Vandermonde’s determinant.) We seek c0, c1, . . . , cn so that p(x) =
∑n
k=0 ckx

k

satisfies

p(xi) =
n∑
k=0

ckx
k
i = yi, i = 0, 1, . . . , n.

That is, we need to solve a system of n+ 1 linear equations for the ci. In matrix form:
1 x0 x2

0 · · · xn0

1 x1 x2
1 · · · xn1

...
...

...
. . .

...
1 xn x2

n · · · xnn



c0

c1
...
cn

 =


y0

y1
...
yn

 .
This equation always has a unique solution because the coefficient matrix has determinant

D =
∏

0≤j<i≤n

(xi − xj) 6= 0.

D is called Vandermonde’s determinant (note that D > 0 if x0 < x1 < · · · < xn). Because
this fact is of independent interest, we’ll sketch a short proof below.

Lemma 5.2. D =
∏

0≤j<i≤n

(xi − xj).

47
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Proof. Consider

V (x0, x1, . . . , xn−1, x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x0 x2
0 · · · xn0

1 x1 x2
1 · · · xn1

...
...

...
. . .

...
1 xn−1 x2

n−1 · · · xnn−1

1 x x2 · · · xn

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

V (x0, x1, . . . , xn−1, x) is a polynomial of degree n in x, and it’s 0 whenever x = xi, i =
0, 1, . . . , n − 1. Thus, V (x0, . . . , x) = c

∏n−1
i=0 (x − xi), by comparing roots and degree.

However, it’s easy to see that the coefficient of xn in V (x0, . . . , x) is V (x0, . . . , xn−1). Thus,
V (x0, . . . , x) = V (x0, . . . , xn−1)

∏n−1
i=0 (x− xi). The result now follows by induction and the

obvious case V (x0, x1) = x1 − x0.

Second Proof. (Lagrange interpolation.) We could define p immediately if we had polyno-
mials `i(x) ∈ Pn, i = 0, . . . , n, such that `i(xj) = δi,j (where δi,j is Kronecker’s delta; that
is, δi,j = 0 for i 6= j, and δi,j = 1 for i = j). Indeed, p(x) =

∑n
i=0 yi `i(x) would then work

as our interpolating polynomial. In short, notice that the polynomials {`0, `1, . . . , `n} would
form a (particularly convenient) basis for Pn.

We’ll give two formulas for `i(x):

(a). Clearly, `i(x) =
∏

j=1,...,n
j 6=i

x− xj
xi − xj

works.

(b). Start with W (x) = (x − x0)(x − x1) · · · (x − xn), and notice that the polynomial we
need satisfies

`i(x) = ai ·
W (x)
x− xi

for some ai ∈ R. (Why?) But then 1 = `i(xi) = aiW
′(xi) (again, why?); that is, we

must have

`i(x) =
W (x)

(x− xi)W ′(xi)
.

[As an aside, note that W ′(xi) is easy to compute: Indeed, W ′(xi) =
∏
j 6=i(xj − xi).]

Please note that `i(x) is a multiple of the polynomial
∏
j 6=i (x − xj), for i = 0, . . . , n, and

that p(x) is then a suitable linear combination of the `i.

Third Proof. (Newton’s formula.) We seek p(x) of the form

p(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + · · · + an(x− x0) · · · (x− xn−1).

(Please note that xn does not appear on the right-hand side.) This form makes it almost
effortless to solve for the ai by plugging-in the xi, i = 0, . . . , n− 1.

y0 = p(x0) = a0

y1 = p(x1) = a0 + a1(x1 − x0) =⇒ a1 =
y1 − a0

x1 − x0
.
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Continuing, we find

a2 =
y2 − a0 − a1(x2 − x0)

(x2 − x0)(x2 − x1)

a3 =
y3 − a0 − a1(x3 − x0)− a2(x3 − x0)(x3 − x1)

(x3 − x0)(x3 − x1)(x3 − x2)

and so on. (Natanson [41, Vol. III] gives another formula for the ai.)

Example 5.3. (Cheney [12]) As a quick means of comparing these three solutions, let’s find
the interpolating polynomial (quadratic) passing through (1, 2), (2,−1), and (3, 1). You’re
invited to check the following:

(Vandermonde): p(x) = 10− 21
2 x+ 5

2 x
2.

(Lagrange): p(x) = (x− 2)(x− 3) + (x− 1)(x− 3) + 1
2 (x− 1)(x− 2).

(Newton): p(x) = 2− 3(x− 1) + 5
2 (x− 1)(x− 2).

As you might have already surmised, Lagrange’s method is the easiest to apply by hand,
although Newton’s formula has much to recommend it too (it’s especially well-suited to
situations where we introduce additional nodes). We next set up the necessary notation to
discuss the finer points of Lagrange’s method.

Given n + 1 distinct points a ≤ x0 < x1 < · · · < xn ≤ b (sometimes called nodes), we
first form the polynomials

W (x) =
n∏
i=0

(x− xi)

and

`i(x) =
∏
j 6=i

x− xj
xi − xj

=
W (x)

(x− xi)W ′(xi)
.

The Lagrange interpolation formula is then

Ln(f)(x) =
n∑
i=0

f(xi) `i(x).

That is, Ln(f) is the unique polynomial in Pn that agrees with f at the xi. In particular,
notice that we must have Ln(p) = p whenever p ∈ Pn. In fact, Ln is a linear projection
from C[ a, b ] onto Pn. (Why is Ln(f) linear in f?)

Typically we’re given (or construct) an array of nodes:

X


x

(0)
0

x
(1)
0 x

(1)
1

x
(2)
0 x

(2)
1 x

(2)
2

...
. . .

and form the corresponding sequence of projections

Ln(f)(x) =
n∑
i=0

f(x(n)
i ) `(n)

i (x).
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An easy (but admittedly pointless) observation is that for a given f ∈ C[ a, b ] we can always
find an array X so that Ln(f) = p∗n, the polynomial of best approximation to f out of Pn
(because f−p∗n has n+1 zeros, we may use these for the xi). Thus, ‖Ln(f)−f‖ = En(f)→ 0
in this case. However, the problem of convergence changes character dramatically if we first
choose X and then consider Ln(f). In general, there’s no reason to believe that Ln(f)
converges to f . In fact, quite the opposite is true:

Theorem 5.4. (Faber, 1914) Given any array of nodes X in [ a, b ], there is some f ∈
C[ a, b ] for which ‖Ln(f)− f‖ is unbounded.

The problem here has little to do with interpolation and everything to do with projec-
tions:

Theorem 5.5. (Kharshiladze, Lozinski, 1941) For each n, let Ln be a continuous, linear
projection from C[ a, b ] onto Pn. Then there is some f ∈ C[ a, b ] for which ‖Ln(f)− f‖ is
unbounded.

Evidently, the operators Ln aren’t positive (monotone), for otherwise the Bohman-
Korovkin theorem (Theorem 2.9) and the fact that Ln is a projection onto Pn would imply
that Ln(f) converges uniformly to f for every f ∈ C[ a, b ].

The proofs of these theorems are long and difficult—we’ll save them for another day.
(Some of you may recognize the Principle of Uniform Boundedness at work here.) The
real point here is that we can’t have everything: A positive result about convergence of
interpolation will require that we impose some extra conditions on the functions f we want
to approximate. As a first step in this direction, we next prove that if f has sufficiently
many derivatives, then the error ‖Ln(f)− f‖ can at least be estimated.

Theorem 5.6. Suppose that f has n + 1 continuous derivatives on [ a, b ]. Let a ≤ x0 <
x1 < · · · < xn ≤ b, let W (x) =

∏n
i=0(x − xi), and let Ln(f) ∈ Pn be the polynomial that

interpolates to f at the xi. Then

|f(x)− Ln(f)(x)| ≤ 1
(n+ 1)!

‖f (n+1)‖ |W (x)|. (5.1)

for every x in [ a, b ].

Proof. For convenience, let’s write p = Ln(f). We’ll prove the Theorem by showing that,
given x in [ a, b ], there exists a ξ in (a, b) with

f(x)− p(x) =
1

(n+ 1)!
f (n+1)(ξ)W (x). (5.2)

If x is one of the xi, then both sides of this formula are 0 and we’re done. Otherwise,
W (x) 6= 0 and we may set λ = [f(x)− p(x)]/W (x). Now consider

ϕ(t) = f(t)− p(t)− λW (t).

Clearly, ϕ(xi) = 0 for each i = 0, 1, . . . , n and, by our choice of λ, we also have ϕ(x) = 0.
Here comes Rolle’s theorem! Because ϕ has n + 2 distinct zeros in [ a, b ], we must have
ϕ(n+1)(ξ) = 0 for some ξ in (a, b). (Why?) Hence,

0 = ϕ(n+1)(ξ) = f (n+1)(ξ)− p(n+1)(ξ)− λW (n+1)(ξ)

= f (n+1)(ξ)−
(
f(x)− p(x)
W (x)

)
· (n+ 1)!
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because p has degree at most n and W is monic and degree n+ 1.

Remarks 5.7.

1. Equation (5.2) is called the Lagrange formula with remainder. [Compare this result
to Taylor’s formula with remainder.]

2. The term f (n+1)(ξ) is actually a continuous function of x. That is, [f(x)−p(x)]/W (x)
is continuous; its value at an xi is [f ′(xi) − p ′(xi)]/W ′(xi) (why?) and W ′(xi) =∏
j 6=i(xi − xj) 6= 0.

3. On any interval [ a, b ], using any nodes, the sequence of Lagrange interpolating poly-
nomials for ex converge uniformly to ex. In this case,

‖ex − Ln(ex)‖ ≤ c

(n+ 1)!
(b− a)n → 0 (as n→∞)

where c = ‖ex‖ in C[ a, b ]. A similar result would hold true for any infinitely differen-
tiable function satisfying, say, ‖f (n)‖ ≤Mn (any entire function, for example).

4. On [−1, 1 ], the norm of
∏n
i=1(x− xi) is minimized by taking xi = cos((2i− 1)π/2n),

the zeros of the n-th Chebyshev polynomial Tn. (Why?) As Rivlin points out [45],
the zeros of the Chebyshev polynomials are a nearly optimal choice for the nodes if
good uniform approximation is desired. We’ll pursue this observation in greater detail
a bit later.

5. In practice, through translation and scaling, interpolation is generally performed on
very narrow intervals about 0 of the form [−δ, δ ] where δ ≈ 2−5 (or even 2−10). This
scaling typically produces interpolating polynomials of smaller degree and, moreover,
facilitates error estimation (in terms of the number of accurate bits in a computer
calculation). In addition, it is often convenient to require that f(0) be interpolated
exactly; in this case, we might seek an interpolating polynomial of the form pn(x) =
f(0) + xmpn−m(x), where m is the multiplicity of zero as a root of f(x) − f(0), and
where pn−m is a polynomial of degree n −m that interpolates to (f(x) − f(0))/xm.
For example, in the case of f(x) = cosx, we might seek a polynomial of the form
pn(x) = 1 + x2pn−2(x).

The question of convergence of interpolation is actually very closely related to the analo-
gous question for the convergence of Fourier series—and the answer here is nearly the same.
We’ll have much more to say about this analogy later. For now, let’s first note that Ln is
continuous (bounded); this will give us our first bit of insight into Faber’s negative result.

Lemma 5.8. ‖Ln(f)‖ ≤ ‖f‖
∥∥∑n

i=0 |`i(x)|
∥∥ for any f ∈ C[ a, b ].

Proof. Exercise.

The expressions λn(x) =
∑n
i=0 |`i(x)| are called the Lebesgue functions and their norms

Λn =
∥∥∑n

i=0 |`i(x)|
∥∥ are called the Lebesgue numbers associated to this process. It’s not

hard to see that Λn is the smallest possible constant that will work in this inequality; in
other words, ‖Ln‖ = Λn. Indeed, if∥∥∥∥∥

n∑
i=0

|`i(x)|

∥∥∥∥∥ =
n∑
i=0

|`i(x0)|,



52 CHAPTER 5. A BRIEF INTRODUCTION TO INTERPOLATION

then we can find an f ∈ C[ a, b ] with ‖f‖ = 1 and f(xi) = sgn(`i(x0)) for all i. (How?)
Then

‖Ln(f)‖ ≥ |Ln(f)(x0)| =

∣∣∣∣∣
n∑
i=0

sgn(`i(x0)) `i(x0)

∣∣∣∣∣ =
n∑
i=0

|`i(x0)| = Λn‖f‖.

As it happens, for any given array of nodes X, we always have Λn(X) ≥ c log n for some
absolute constant c (this is where the hard work comes in; see Rivlin [45] or Natanson
[41] for further details), and, in particular, Λn(X) → ∞ as n → ∞. Given this (and the
Principle of Uniform Boundedness; see Appendix G), Faber’s Theorem (Theorem 5.4) now
follows immediately.

A simple application of the triangle inequality will allow us to bring En(f) back into the
picture:

Lemma 5.9. (Lebesgue’s Theorem) ‖f − Ln(f)‖ ≤ (1 + Λn)En(f), for any f ∈ C[ a, b ].

Proof. Let p∗ be the best approximation to f out of Pn. Then, because Ln(p∗) = p∗, we
have

‖f − Ln(f)‖ ≤ ‖f − p∗‖+ ‖Ln(f − p∗)‖
≤ (1 + Λn) ‖f − p∗‖ = (1 + Λn)En(f).

Corollary 5.10. For any f ∈ C[ a, b ] we have

‖f − Ln(f)‖ ≤ (3/2)(1 + Λn)ωf (1/
√
n).

It follows from Corollary 5.10 that Ln(f) converges uniformly to f provided that the
array of nodes X can be chosen to satisfy Λn(X)ωf (1/

√
n) → 0 as n → ∞. Consider,

however, the following somewhat disheartening fact (see Rivlin [45, Theorem 4.6]): For the
array of equally spaced nodes in [−1, 1 ], which we will call E, there exist absolute constants
k1 and k2 such that

k1(3/2)m ≤ Λ2m(E) ≤ k22me2m

for all m ≥ 2. That is, the Lebesgue numbers for this process grow exponentially fast.
It will come as no surprise, then, that there are surprisingly simple functions for which
interpolation at equally spaced points fails to converge:

Examples 5.11.

1. (S. Bernstein, 1918) On [−1, 1 ], the Lagrange interpolating polynomials to f(x) = |x|
based on the system of equally spaced nodes E, satisfy

lim sup
n→∞

Ln(f)(x) = +∞

for all 0 < |x| < 1. In other words, the sequence (Ln(f)(x)) diverges for all x in [−1, 1 ]
other than x = 0,±1.

2. (C. Runge, 1901) On [−5, 5 ], the Lagrange interpolating polynomials to f(x) =
(1 + x2)−1 based on the system of equally spaced nodes E satisfy

lim sup
n→∞

Ln(f)(x) = +∞
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for all |x| > 3.63. In this case, the interpolating polynomials exhibit radical behav-
ior near the endpoints of the interval. This phenomenon is similar to the so-called
Gibbs phenomenon from Fourier analysis, where the approximating polynomials are
sometimes known to “overshoot” their goal.

Nevertheless, as we’ll see in the next section, we can find a (nearly optimal) array of
nodes T for which the interpolation process will converge for a large class of functions and,
moreover, has several practical advantages.

Chebyshev Interpolation

In this section, we focus our attention on the array of nodes in [−1, 1] generated by the zeros
of the Chebyshev polynomials, which we will refer to as T (and call simply the Chebyshev
nodes); these are the points

x
(n+1)
k = cos θ(n+1)

k = cos
(

(2k + 1)π
2(n+ 1)

)
, k = 0, . . . , n, n = 0, 1, 2, . . . .

(Note, specifically, that (x(n+1)
k )nk=0 are the zeros of Tn+1. Also note that the zeros are

listed in decreasing order in the formula above; for this reason, some authors write, instead,
x

(n+1)
k = − cos θ(n+1)

k .) As usual, when n is clear from context, we will omit the superscript
(n+ 1).

We know that the Lebesgue numbers for any interpolation process grow at least as fast
as log n. In the case of interpolation at the Chebyshev nodes T , this is also an upper bound,
lending further evidence to our repeated claims that these nodes are nearly optimal (at least
for uniform approximation). The following result is due (essentially) to Bernstein [6]; for a
proof of the version stated here, see Rivlin [45, Theorem 4.5].

Theorem 5.12. For the Chebyshev system of nodes T we have Λn(T ) < (2/π) log n+ 4.

If we apply Lagrange interpolation to the Chebyshev system of nodes, then

W (x) =
n∏
k=0

(x− xk) = 2−nTn+1

and the Lagrange interpolating polynomial Ln(f), which we will write as Cn(f) in order to
distinguish it from the general case, is given by

Cn(f)(x) =
n∑
k=0

f(xk)
Tn+1(x)

(x− xk)T ′n+1(xk)
.

But recall that for x = cos θ we have

T ′n(x) =
n sinnθ

sin θ
=

n sinnθ√
1− cos2 θ

=
n sinnθ√

1− x2
.

And so for xi = cos((2i − 1)π/2n), i.e., for θi = (2i − 1)π/2n, it follows that sinnθi =
sin((2i− 1)π/2) = (−1)i−1; that is,

1
T ′n(xi)

=
(−1)i−1

√
1− x2

i

n
.
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It follows that our interpolation formula may be written as

Cn(f)(x) =
n∑
k=0

f(xk)
(−1)k−1Tn+1(x)
(n+ 1)(x− xk)

√
1− x2

k . (5.3)

Our first result is a refinement of Theorem 5.6 in light of Remark 5.7 (4).

Corollary 5.13. Suppose that f has n+1 continuous derivatives on [−1, 1 ]. Let Cn(f) ∈ Pn
be the polynomial that interpolates f at the zeros of Tn+1, the n+1-st Chebyshev polynomial.
Then

|f(x)− Cn(f)(x)| ≤ 1
(n+ 1)!

‖f (n+1)‖ |2−nTn+1(x)| =
1

2n(n+ 1)!
‖f (n+1)‖.

Proof. As already noted, the auxiliary polynomial W (x) =
∏n
i=0(x − xi) satisfies W (x) =

2−nTn+1(x) and, of course, |Tn+1(x)| ≤ 1.

While the Chebyshev nodes are not quite optimal for interpolation (see Problem 9),
the interpolating polynomial is nevertheless remarkably close to the best approximation.
Indeed, according to a result of Powell [42], if we set Θn(f) = ‖f − Cn(f)‖, then

En(f) ≤ Θn(f) ≤ 4.037En(f) for 1 ≤ n ≤ 25,

where, as usual, En(f) = ‖f−p∗n‖ is the minimum error in approximating f by a polynomial
of degree at most n. Thus, in practice, for approximations by polynomials of modest degree,
Chebyshev interpolation offers an attractive and efficient alternative to finding the best
approximation.

Hermite Interpolation

A natural extension of the problem addressed at the beginning of this chapter is to increase
the number of conditions on our interpolating polynomial and ask for the polynomial p of
least degree that satisfies

p(m)(xk) = y
(m)
k , k = 0, . . . , n, m = 0, 1, . . . , αk − 1, (5.4)

where the numbers y(m)
k are given in advance. In other words, we specify not only the values

of the polynomial at each node xk, we also specify the values of its first αk − 1 derivatives,
where αk is allowed to vary at each node.

Now the system of equations (5.4) imposes a total of N = α0 + · · · + αn conditions, so
it’s not at all surprising that we can find a polynomial of degree at most N − 1 that fulfills
them. Moreover, it’s not much harder to see that p must be unique.

This problem was first solved by Hermite [27] in 1878. We won’t address the general
problem (but see Appendix F). Instead, we will settle for displaying the solution in the case
where α0 = · · · = αn = 2. In other words, the case where we specify only the first derivative
y′k of p at each node xk. Note that in this case p will have degree at most 2n− 1.

Following the notation used throughout this chapter, we set

W (x) = (x− x0) · · · (x− xn), and `k(x) =
W (x)

(x− xk)W ′(xk)
.
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Now, as is easily verified,

`′k(x) =
(x− xk)W ′(x)−W (x)

(x− xk)2W ′(xk)
.

Thus, by l’Hôpital’s rule,

`′k(xk) = lim
x→xk

(x− xk)W ′′(x) +W ′(x)−W ′(x)
2(x− xk)W ′(xk)

=
W ′′(xk)
2W ′(xk)

.

And now consider the polynomials

Ak(x) =
[

1− W ′′(xk)
W ′(xk)

(x− xk)
]
`k(x)2 and Bk(x) = (x− xk) `k(x)2. (5.5)

Note that Ak and Bk each have degree at most 2(n− 1) + 1 = 2n− 1. Moreover, it’s easy
to see that Ak and Bk satisfy

Ak(xk) = 1 A′k(xk) = 0
Bk(xk) = 0 B′k(xk) = 1.

Consequently, the polynomial

p(x) =
n∑
k=0

ykAk(x) +
n∑
k=0

y′kBk(x) (5.6)

has degree at most 2n− 1 and satisfies

p(xk) = yk and p′(xk) = y′k

for k = 0, . . . , n.

Exercise 5.14. Show that
∑n
k=1Ak(x) = 1 for all x. [Hint: (5.6) is exact for all polynomials

of degree at most 2n− 1.]

By combining the process just described with interpolation at the Chebyshev nodes,
Fejér was able to prove the following result (see Natanson [41, Vol. III] for much more on
this result).

Theorem 5.15. Let f ∈ C[−1, 1 ] and, for each n, let Hn denote the polynomial of degree
at most 2n− 1 that satisfies

Hn(x(n)
k ) = f(x(n)

k ) and H ′n(x(n)
k ) = 0,

for all k, where

x
(n)
k = cos θ(n)

k = cos
(

(2k − 1)π
2n

)
, k = 1, . . . , n

are the zeros of the Chebyshev polynomial Tn. Then Hn ⇒ f on [−1, 1 ].
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Proof. As usual, we will think of n as fixed and suppress the superscript (n); that is, we
will write xk in place of x(n)

k .
For the Chebyshev nodes, recall that we may take W (x) = Tn(x). Next, let’s compute

W ′(xk), `k(x), and W ′′(xk). As we’ve already seen,

T ′n(xk) = n
sinnθk
sin θk

=
(−1)n−1n√

1− x2
k

,

and, thus,

`k(x) =
(−1)k−1Tn(x)
n(x− xk)

√
1− x2

k .

Next,

T ′′n (xk) =
n sinnθk cos θk − n2 cosnθk sin θk

sin3 θk
=

(−1)n−1nxk
(1− xk)3/2

,

and so, in the notation of (5.5), we have

W ′′(xk)
W ′(xk)

=
T ′′n (xk)
T ′n(xk)

=
xk

1− x2
k

and hence, after a bit of rewriting,

Ak(x) =
[

1− W ′′(xk)
W ′(xk)

(x− xk)
]
`k(x)2 =

[
Tn(x)

n(x− xk)

]2
(1− xxk).

Please note, in particular, that Ak(x) ≥ 0 for all x in [−1, 1 ], an observation that will play
a critical role in the remainder of the proof. Also note that Ak(x) ≤ 2/n2(x − xk)2 for all
x 6= xk in [−1, 1 ].

Now according to equation (5.6), the polynomial Hn is given by

Hn(x) =
n∑
k=1

f(xk)Ak(x)

where, as we know,
∑n
k=1Ak(x) = 1 for all x in [−1, 1 ]. In particular, we have

|Hn(x)− f(x)| ≤
n∑
k=1

|f(xk)− f(x)|Ak(x).

The rest of the proof follows familiar lines: Given ε > 0, we choose δ > 0 so that |f(x) −
f(y)| < ε whenever |x − y| < δ. For x fixed, let I ⊂ {1, . . . , n} denote the indices k for
which |x− xk| < δ and let J denote the indices k for which |x− xk| ≥ δ. Then

∑
k∈I

|f(xk)− f(x)|Ak(x) < ε

n∑
k=1

|f(xk)− f(x)|Ak(x) = ε

while ∑
k∈J

|f(xk)− f(x)|Ak(x) ≤ 2‖f‖ · n · 2
n2δ2

< ε

provided that n is sufficiently large.
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The Inequalities of Markov and Bernstein

As it happens, finding the polynomial of degree n that best approximates f ∈ C[ a, b ] can
be accomplished through an algorithm that finds the polynomial of best approximation over
a set of only n+ 2 (appropriately chosen) points. We won’t pursue the algorithm here, but
for full details, see the discussion of the One Point Exchange Algorithm in Rivlin [45]. On
the other hand, one aspect of this algorithm is of great interest and, moreover, is an easy
application of the techniques presented in this chapter.

In particular, a key step in the algorithm requires a bound on differentiation over Pn
of the form ‖p′‖ ≤ Cn‖p‖, where Cn is some constant depending only on n. The fact that
such a constant exists is nearly obvious by itself (after all, Pn is finite-dimensional), but the
value of the best constant Cn is of independent interest (and of some historical significance,
too).

The inequality we’ll prove is due to A. A. Markov from 1889:

Theorem 5.16. (Markov’s Inequality) If p ∈ Pn, and if |p(x)| ≤ 1 for |x| ≤ 1, then
|p ′(x)| ≤ n2 for |x| ≤ 1. Moreover, |p ′(x)| = n2 can only occur at x = ±1, and only when
p = ±Tn, the Chebyshev polynomial of degree n.

Markov’s brother, V. A. Markov, later improved on this, in 1916, by showing that
|p(k)(x)| ≤ T

(k)
n (1). We’ve alluded to this fact already (see Rivlin [45, p. 31]), and even

more is true. However, we’ll settle for the somewhat looser bound given in the theorem.
About 20 years after Markov, in 1912, Bernstein asked for a similar bound for the

derivative of a complex polynomial over the unit disk |z| ≤ 1. Now the maximum modulus
theorem tells us that we may reduce to the case |z| = 1, that is, z = eiθ, and so Bernstein
was able to restate the problem in terms of trig polynomials.

Theorem 5.17. (Bernstein’s Inequality) If S ∈ Tn, and if |S(θ)| ≤ 1, then |S ′(θ)| ≤ n.
Equality is only possible for S(θ) = sinn(θ − θ0).

Our plan is to deduce Markov’s inequality from Bernstein’s inequality by a method of
proof due to Pólya and Szegö in 1928. However, we will not prove the assertions about
equality in either theorem.

To begin, let’s consider the Lagrange interpolation formula in the case where xi =
cos((2i − 1)π/2n), i = 1, . . . , n, are the zeros of the Chebyshev polynomial Tn. Recall
that we have −1 < xn < xn−1 < · · · < x1 < 1. (Compare the following result with the
calculations used in the proof of Fejér’s Theorem 5.15.)

Lemma 5.18. Each polynomial p ∈ Pn−1 may be written

p(x) =
1
n

n∑
i=1

p(xi) · (−1)i−1
√

1− x2
i ·

Tn(x)
x− xi

where x1, . . . , xn are the zeros of Tn, the n-th Chebyshev polynomial.

Proof. This follows from equation (5.3), with n + 1 is replaced by n, and the fact that
Lagrange interpolation is exact for polynomials of degree < n.

Lemma 5.19. For any polynomial p ∈ Pn−1, we have

max
−1≤x≤1

|p(x)| ≤ max
−1≤x≤1

∣∣n√1− x2 p(x)
∣∣.
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Proof. To save wear and tear, let’s write M = max−1≤x≤1

∣∣n√1− x2 p(x)
∣∣.

First consider an x in the interval [xn, x1 ]; that is, |x| ≤ cos(π/2n) = x1. In this case
we can estimate

√
1− x2 from below:

√
1− x2 ≥

√
1− x2

1 =
√

1− cos2
( π

2n

)
= sin

( π
2n

)
≥ 1

n
,

because sin θ ≥ 2θ/π for 0 ≤ θ ≤ π/2 (from the mean value theorem). Hence, for |x| ≤
cos(π/2n), we get |p(x)| ≤ n

√
1− x2 |p(x)| ≤M .

Now, for x outside the interval [xn, x1 ], we apply our interpolation formula. In this
case, each of the factors x− xi is of the same sign. Thus,

|p(x)| =
1
n

∣∣∣∣∣
n∑
i=1

p(xi)
(−1)i−1

√
1− x2

i Tn(x)
x− xi

∣∣∣∣∣
≤ M

n2

n∑
i=1

∣∣∣∣ Tn(x)
x− xi

∣∣∣∣ =
M

n2

∣∣∣∣∣
n∑
i=1

Tn(x)
x− xi

∣∣∣∣∣ .
But,

n∑
i=1

Tn(x)
x− xi

= T ′n(x) (why?)

and we know that |T ′n(x)| ≤ n2. Thus, |p(x)| ≤M .

We next turn our attention to trig polynomials. As usual, given an algebraic polynomial
p ∈ Pn, we will sooner or later consider S(θ) = p(cos θ). In this case, S′(θ) = p ′(cos θ) sin θ
is an odd trig polynomial of degree at most n and S′(θ) = p ′(cos θ) sin θ = p ′(x)

√
1− x2 .

Conversely, if S ∈ Tn is an odd trig polynomial, then S(θ)/ sin θ is even, and so may
be written S(θ)/ sin θ = p(cos θ) for some algebraic polynomial p of degree at most n − 1.
Thus, from Lemma 5.19,

max
0≤θ≤2π

∣∣∣∣ S(θ)
sin θ

∣∣∣∣ = max
0≤θ≤2π

|p(cos θ)| ≤ n max
0≤θ≤2π

|p(cos θ) sin θ| = n max
0≤θ≤2π

|S(θ)|.

This proves

Corollary 5.20. If S ∈ Tn is an odd trig polynomial, then

max
0≤θ≤2π

∣∣∣∣ S(θ)
sin θ

∣∣∣∣ ≤ n max
0≤θ≤2π

|S(θ)|.

Now we’re ready for Bernstein’s inequality.

Theorem 5.21. If S ∈ Tn, then

max
0≤θ≤2π

|S ′(θ)| ≤ n max
0≤θ≤2π

|S(θ)|.
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Proof. We first define an auxiliary function f(α, θ) =
[
S(α+ θ)−S(α− θ)

]/
2. For α fixed,

f(α, θ) is an odd trig polynomial in θ of degree at most n. Consequently,∣∣∣∣f(α, θ)
sin θ

∣∣∣∣ ≤ n max
0≤θ≤2π

|f(α, θ)| ≤ n max
0≤θ≤2π

|S(θ)|.

But

S′(α) = lim
θ→0

S(α+ θ)− S(α− θ)
2θ

= lim
θ→0

f(α, θ)
sin θ

,

and hence |S′(α)| ≤ nmax 0≤θ≤2π |S(θ)|.

Finally, we prove Markov’s inequality.

Theorem 5.22. If p ∈ Pn, then max−1≤x≤1 |p ′(x)| ≤ n2 max−1≤x≤1 |p(x)|.

Proof. We know that S(θ) = p(cos θ) is a trig polynomial of degree at most n satisfying

max
−1≤x≤1

|p(x)| = max
0≤θ≤2π

|p(cos θ)|.

Because S′(θ) = p ′(cos θ) sin θ is also trig polynomial of degree at most n, Bernstein’s
inequality yields

max
0≤θ≤2π

|p′(cos θ) sin θ| ≤ n max
0≤θ≤2π

|p(cos θ)|.

In other words,
max
−1≤x≤1

∣∣p ′(x)
√

1− x2
∣∣ ≤ n max

−1≤x≤1

|p(x)|.

Because p ′ ∈ Pn−1, the desired inequality now follows easily from Lemma 5.19.

max
−1≤x≤1

|p ′(x)| ≤ n max
−1≤x≤1

∣∣p ′(x)
√

1− x2
∣∣ ≤ n2 max

−1≤x≤1

|p(x)|.
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Problems

1. Let y0, y1, . . . , yn ∈ R be given. Show that the polynomial p ∈ Pn satisfying p(xi) = yi,
i = 0, 1, . . . , n, may be written as

p(x) = c

∣∣∣∣∣∣∣∣∣∣
0 1 x x2 · · · xn

y0 1 x0 x2
0 · · · xn0

...
...

...
. . .

...
yn 1 xn x2

n · · · xnn

∣∣∣∣∣∣∣∣∣∣
,

where c is a certain constant. Find c and prove the formula.

Throughout, x0, . . . , xn are distinct points in some interval [ a, b ]; W (x) =
∏n
i=0(x − xi);

`i(x), i = 0, . . . , n, denote the fundamental system of polynomials defined by `i(x) =
W (x)/(x−xi)W ′(xi); and Ln(f)(x) =

∑n
i=0 f(xi)`i(x) denotes the (unique) polynomial of

degree at most n that interpolates to f at the nodes xi. The associated Lebesgue function
is given by λn(x) =

∑n
i=0 |`i(x)| and the Lebesgue number is Λn = ‖λn‖ = ‖Ln‖.

2. Prove that Ln is a linear projection onto Pn. That is, show that Ln(αg + βh) =
αLn(g) + βLn(h), for any g, h ∈ C[ a, b ], α, β ∈ R, and that Ln(g) = g if and only if
g ∈ Pn.

3. Show that
∑n
i=0 `i(x) ≡ 1. Conclude that λn(x) ≥ 1 for all x and n and, hence,

Λn ≥ 1 for every n.

4. More generally, show that
∑n
i=0 x

k
i `i(x) = xk, for k = 0, 1, . . . , n.

5. Show that ‖Ln(f)‖ ≤ Λn‖f‖ for all f ∈ C[ a, b ]. Show that no smaller number Λ has
this property.

6. Show that the error in the Lagrange interpolation formula at a given point x can be
written as (Ln(f)− f)(x) =

∑n
i=0[ f(xi)− f(x) ] `i(x).

7. Let f ∈ C[ a, b ].

(a) If, at some point x∗ in [ a, b ], we have limn→∞ λn(x∗)En(f) = 0, show that
Ln(f)(x∗)→ f(x∗) as n→∞. [Hint: Examine the proof of Lebesgue’s Theorem.]

(b) If we have limn→∞ ΛnEn(f) = 0, then Ln(f) converges uniformly to f on [ a, b ].

8. In the complex plane, show that the polynomial pn−1(z) = zn−1 interpolates to the
function f(z) = 1/z at the n-th roots of unity, zk = e2πik/n, k = 0, . . . , n − 1. Show,
too, that ‖f − pn−1‖ =

√
2 6→ 0 as n→∞, where ‖ · ‖ denotes the sup-norm over the

unit disk T = {z : |z| = 1}.
9. Let −1 ≤ x0 < x1 < x2 ≤ 1 and let Λ = ‖

∑2
k=0 |`k(x)| ‖ denote the corresponding

Lebesgue number. Show that the minimum value of Λ is 5/4 and is attained when
−x0 = x2 ≥ 2

3

√
2 and x1 = 0. Meanwhile, if x0, x1, and x2 are chosen to be the roots

of T3, show that the value of Λ is 5/3. Thus, placing the nodes at the zeros of Tn does
not, in general, lead to a minimum value for Λn.

10. Show that the Hermite interpolating polynomial of degree at most 2n − 1; i.e., the
solution to the system of equations (5.4), is unique.



Chapter 6

A Brief Introduction to Fourier
Series

The Fourier series of a 2π-periodic (bounded, integrable) function f is

a0

2
+
∞∑
k=1

(
ak cos kx+ bk sin kx

)
,

where the coefficients are defined by

ak =
1
π

∫ π

−π
f(t) cos kt dt and bk =

1
π

∫ π

−π
f(t) sin kt dt.

Please note that if f is Riemann integrable on [−π, π ], then each of these integrals is well-
defined and finite; indeed,

|ak| ≤
1
π

∫ π

−π
|f(t)| dt

and so, for example, we would have |ak| ≤ 2‖f‖ for f ∈ C2π.
We write the partial sums of the series as

sn(f)(x) =
a0

2
+

n∑
k=1

(
ak cos kx+ bk sin kx

)
.

Now while sn(f) need not converge pointwise to f (in fact, it may even diverge at a given
point), and while sn(f) is not typically a good uniform approximation to f , it is still a
very natural choice for an approximation to f in the “least squares” sense (which we’ll
make precise shortly). Said in other words, the Fourier series for f will provide a useful
representation for f even if it fails to converge pointwise to f .

We begin with a (rather long but entirely elementary) series of observations.

Remarks 6.1.

1. The collection of functions 1, cosx, cos 2x, . . ., and sinx, sin 2x, . . ., are orthogonal on
[−π, π ]. That is,∫ π

−π
cosmx cosnx dx =

∫ π

−π
sinmx sinnx dx =

∫ π

−π
cosmx sinnx dx = 0

61
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for any m 6= n (and the last equation even holds for m = n),∫ π

−π
cos2mxdx =

∫ π

−π
sin2mxdx = π

for any m 6= 0, and, of course,
∫ π
−π 1 dx = 2π.

2. What this means is that if T (x) = α0
2 +

∑n
k=1

(
αk cos kx+ βk sin kx

)
, then

1
π

∫ π

−π
T (x) cosmxdx =

αm
π

∫ π

−π
cos2mxdx = αm

for m 6= 0, while
1
π

∫ π

−π
T (x) dx =

α0

2π

∫ π

−π
dx = α0.

That is, if T ∈ Tn, then T is actually equal to its own Fourier series.

3. The partial sum operator sn(f) is a linear projection from C2π onto Tn.

4. If T (x) = α0
2 +

∑n
k=1

(
αk cos kx+ βk sin kx

)
is a trig polynomial, then

1
π

∫ π

−π
f(x)T (x) dx =

α0

2π

∫ π

−π
f(x) dx+

n∑
k=1

αk
π

∫ π

−π
f(x) cos kx dx

+
n∑
k=1

βk
π

∫ π

−π
f(x) sin kx dx

=
α0a0

2
+

n∑
k=1

(
αkak + βkbk

)
,

where (ak) and (bk) are the Fourier coefficients for f . [This should remind you of the
dot product of the coefficients.]

5. Motivated by Remarks 1, 2, and 4, we define the inner product of two elements f ,
g ∈ C2π by

〈f, g〉 =
1
π

∫ π

−π
f(x) g(x) dx.

(Be forewarned: Some authors prefer the normalizing factor 1/2π in place of 1/π here.)
Note that from Remark 4 we have 〈f, sn(f)〉 = 〈sn(f), sn(f)〉 for any n. (Why?)

6. If some f ∈ C2π has ak = bk = 0 for all k, then f ≡ 0.

Proof. Indeed, by Remark 4 (or linearity of the integral), this means that∫ π

−π
f(x)T (x) dx = 0

for any trig polynomial T . But from Weierstrass’s second theorem we know that f is
the uniform limit of some sequence of trig polynomials (Tn). Thus,∫ π

−π
f(x)2 dx = lim

n→∞

∫ π

−π
f(x)Tn(x) dx = 0.

Because f is continuous, this easily implies that f ≡ 0.
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7. If f , g ∈ C2π have the same Fourier series, then f ≡ g. Hence, the Fourier series for
an f ∈ C2π provides a unique representation for f (even if the series fails to converge
to f).

8. The coefficients a0, a1, . . . , an and b1, b2, . . . , bn minimize the expression

ϕ(a0, a1, . . . , bn) =
∫ π

−π

[
f(x)− sn(f)(x)

]2
dx.

Proof. It’s not hard to see, for example, that

∂ ϕ

∂ ak
=
∫ π

−π
2
[
f(x)− sn(f)(x)

]
cos kx dx = 0

precisely when ak satisfies∫ π

−π
f(x) cos kx dx = ak

∫ π

−π
cos2 kx dx.

9. The partial sum sn(f) is the best approximation to f out of Tn relative to the L2

norm

‖f‖2 =
√
〈f, f〉 =

(
1
π

∫ π

−π
f(x)2 dx

)1/2

.

That is,
‖f − sn(f)‖2 = min

T∈Tn
‖f − T‖2.

Moreover, using Remarks 4 and 5, we have

‖f − sn(f)‖22 = 〈f − sn(f), f − sn(f)〉
= 〈f, f〉 − 2 〈f, sn(f)〉+ 〈sn(f), sn(f)〉
= ‖f‖22 − ‖sn(f)‖22

=
1
π

∫ π

−π
f(x)2 dx− a2

0

2
−

n∑
k=1

(a2
k + b2k).

[This should remind you of the Pythagorean theorem.]

10. It follows from Remark 9 that

1
π

∫ π

−π
sn(f)(x)2 dx =

a2
0

2
+

n∑
k=1

(
a2
k + b2k

)
≤ 1

π

∫ π

−π
f(x)2 dx.

In other symbols, ‖sn(f)‖2 ≤ ‖f‖2. In particular, the Fourier coefficients of any
f ∈ C2π are square summable. (Why?)

11. If f ∈ C2π, then its Fourier coefficients (an) and (bn) tend to zero as n→∞.
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12. It follows from Remark 10 and Weierstrass’s second theorem that sn(f) → f in the
L2 norm whenever f ∈ C2π. Indeed, given ε > 0, choose a trig polynomial T such
that ‖f − T‖ < ε. Then, because sn(T ) = T for large enough n, we have

‖f − sn(f)‖2 ≤ ‖f − T‖2 + ‖sn(T − f)‖2
≤ 2‖f − T‖2
≤ 2

√
2 ‖f − T‖ < 2

√
2 ε,

where the penultimate inequality follows from the easily verifiable fact that ‖f‖2 ≤√
2 ‖f‖ for any f ∈ C2π. (Compare this calculation with Lebesgue’s Theorem 5.9.)

By way of comparison, let’s give a simple class of functions whose Fourier partial sums
provide good uniform approximations.

Theorem 6.2. If f ′′ ∈ C2π, then the Fourier series for f converges absolutely and uni-
formly to f .

Proof. First notice that integration by-parts leads to an estimate on the order of growth of
the Fourier coefficients of f .

πak =
∫ π

−π
f(x) cos kx dx =

∫ π

−π
f(x) d

(
sin kx
k

)
= −1

k

∫ π

−π
f ′(x) sin kx dx

(because f is 2π-periodic). Thus, |ak| ≤ 2‖f ′ ‖/k → 0 as k → ∞. Now we integrate
by-parts again:

−πkak =
∫ π

−π
f ′(x) sin kx dx =

∫ π

−π
f ′(x) d

(
cos kx
k

)
=

1
k

∫ π

−π
f ′′(x) cos kx dx

(because f ′ is 2π-periodic). Thus, |ak| ≤ 2‖f ′′ ‖/k2 → 0 as k →∞. More importantly, this
inequality (along with the Weierstrass M -test) implies that the Fourier series for f is both
uniformly and absolutely convergent:∣∣∣∣∣a0

2
+
∞∑
k=1

(
ak cos kx+ bk sin kx

)∣∣∣∣∣ ≤ ∣∣∣a0

2

∣∣∣+
∞∑
k=1

(
|ak|+ |bk|

)
≤ C

∞∑
k=1

1
k2
.

But why should the series actually converge to f ? Well, if we call the sum

g(x) =
a0

2
+
∞∑
k=1

(
ak cos kx+ bk sin kx

)
,

then g ∈ C2π (why?) and g has the same Fourier coefficients as f (why?). Hence (by
Remarks 6.1 (7), above, g = f .

Our next chore is to find a closed expression for sn(f). For this we’ll need a couple of
trig identities; the first two need no explanation.

cos kt cos kx+ sin kt sin kx = cos k(t− x)
2 cosα sinβ = sin(α+ β)− sin(α− β)

1
2 + cos θ + cos 2θ + · · ·+ cosnθ = sin (n+ 1

2 ) θ

2 sin 1
2 θ



65

Here’s a short proof for the third:

sin 1
2θ +

∑n
k=1 2 cos kθ sin 1

2θ = sin 1
2θ +

∑n
k=1

[
sin (k + 1

2 )θ − sin (k − 1
2 )θ
]

= sin (n+ 1
2 )θ.

The function

Dn(t) =
sin (n+ 1

2 ) t
2 sin 1

2 t

is called Dirichlet’s kernel. It plays an important role in our next calculation.
We’re now ready to re-write our formula for sn(f).

sn(f)(x) = 1
2a0 +

n∑
k=1

(
ak cos kx+ bk sin kx

)
=

1
π

∫ π

−π
f(t)

[
1
2 +

n∑
k=1

cos kt cos kx+ sin kt sin kx

]
dt

=
1
π

∫ π

−π
f(t)

[
1
2 +

n∑
k=1

cos k(t− x)

]
dt

=
1
π

∫ π

−π
f(t) ·

sin (n+ 1
2 ) (t− x)

2 sin 1
2 (t− x)

dt

=
1
π

∫ π

−π
f(t)Dn(t− x) dt =

1
π

∫ π

−π
f(x+ t)Dn(t) dt.

It now follows easily that sn(f) is linear in f (because integration against Dn is linear), that
sn(f) ∈ Tn (because Dn ∈ Tn), and, in fact, that sn(Tm) = Tmin(m,n). In other words, sn is
indeed a linear projection onto Tn.

While we know that sn(f) is a good approximation to f in the L2 norm, a better under-
standing of its effectiveness as a uniform approximation will require a better understanding
of the Dirichlet kernel Dn. Here are a few pertinent facts:

Lemma 6.3. (a) Dn is even,

(b)
1
π

∫ π

−π
Dn(t) dt =

2
π

∫ π

0

Dn(t) dt = 1,

(c) |Dn(t)| ≤ n+ 1
2 and Dn(0) = n+ 1

2 ,

(d)
| sin (n+ 1

2 ) t |
t

≤ |Dn(t)| ≤ π

2t
for 0 < t < π,

(e) If λn =
1
π

∫ π

−π
|Dn(t)| dt, then

4
π2

log n ≤ λn ≤ 3 + log n.

Proof. (a), (b), and (c) are relatively clear from the fact that

Dn(t) = 1
2 + cos t+ cos 2t+ · · ·+ cosnt.
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(Notice, too, that (b) follows from the fact that sn(1) = 1.) For (d) we use a more delicate
estimate: Because 2θ/π ≤ sin θ ≤ θ for 0 < θ < π/2, it follows that 2t/π ≤ 2 sin(t/2) ≤ t
for 0 < t < π. Hence,

π

2t
≥
| sin (n+ 1

2 ) t |
2 sin 1

2 t
≥
| sin (n+ 1

2 ) t |
t

for 0 < t < π. Next, the upper estimate in (e) is easy:

2
π

∫ π

0

|Dn(t)| dt =
2
π

∫ π

0

| sin (n+ 1
2 ) t |

2 sin 1
2 t

dt

≤ 2
π

∫ 1/n

0

(n+ 1
2 ) dt+

2
π

∫ π

1/n

π

2t
dt

=
2n+ 1
πn

+ log π + log n

< 3 + log n.

The lower estimate takes some work:

2
π

∫ π

0

|Dn(t)| dt =
2
π

∫ π

0

| sin (n+ 1
2 ) t |

2 sin 1
2 t

dt

≥ 2
π

∫ π

0

| sin (n+ 1
2 ) t |

t
dt

=
2
π

∫ (n+ 1
2 )π

0

| sinx |
x

dx

≥ 2
π

∫ nπ

0

| sinx |
x

dx

=
2
π

n∑
k=1

∫ kπ

(k−1)π

| sinx |
x

dx

≥ 2
π

n∑
k=1

1
kπ

∫ kπ

(k−1)π

| sinx | dx

=
4
π2

n∑
k=1

1
k
≥ 4

π2
log n,

because
∑n
k=1

1
k ≥ log n.

The numbers λn = ‖Dn‖1 = 1
π

∫ π
−π |Dn(t)| dt are called the Lebesgue numbers associated

to this process (compare this to the terminology we used for interpolation). The point here
is that λn gives the norm of the partial sum operator (projection) on C2π and (just as with
interpolation) λn → ∞ as n → ∞. As a matter of no small curiosity, notice that, from
Remarks 6.1 (10), the norm of sn as an operator on L2 is 1.

Corollary 6.4. If f ∈ C2π, then

|sn(f)(x)| ≤ 1
π

∫ π

−π
|f(x+ t)| |Dn(t)| dt ≤ λn‖f‖. (6.1)

In particular, ‖sn(f)‖ ≤ λn‖f‖ ≤ (3 + log n)‖f‖.
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If we approximate the function sgnDn by a continuous function f of norm one, then

sn(f)(0) ≈ 1
π

∫ π

−π
|Dn(t)| dt = λn.

Thus, λn is the smallest constant that works in equation (6.1). The fact that the partial sum
operators are not uniformly bounded on C2π, along with the uniform boundedness theorem,
tells us that there must be some f ∈ C2π for which ‖sn(f)‖ is unbounded. But, as we’ve
seen, this has more to do with certain projections than with Fourier series; indeed, a version
of the Kharshiladze-Lozinski Theorem is valid in this setting, too (cf. Theorem 5.5).

Theorem 6.5. (Kharshiladze, Lozinski) For each n, let Ln be a continuous, linear projec-
tion from C2π onto Tn. Then, there is some f ∈ C2π for which ‖Ln(f)− f‖ is unbounded.

Although Corollary 6.4 may not look very useful, it does give us some information about
the effectiveness of sn(f) as a uniform approximation to f . Specifically, we have Lebesgue’s
theorem:

Theorem 6.6. If f ∈ C2π and if we set ETn (f) = minT∈Tn ‖f − T‖, then

ETn (f) ≤ ‖f − sn(f)‖ ≤ (4 + log n)ETn (f).

Proof. Let T ∗ be the best uniform approximation to f out of Tn. Then, because sn(T ∗) =
T ∗, we get

‖f − sn(f)‖ ≤ ‖f − T ∗‖+ ‖sn(T ∗ − f)‖ ≤ (4 + log n) ‖f − T ∗‖.

As an application of Lebesgue’s theorem, let’s speak briefly about “Chebyshev series,”
a notion that fits neatly between approximation by algebraic polynomials and by trig poly-
nomials.

Theorem 6.7. Suppose that f ∈ C[−1, 1 ] is twice continously differentiable. Then f
may be written as a uniformly and absolutely convergent Chebyshev series; that is, f(x) =∑∞
k=0 akTk(x), where

∑∞
k=0 |ak| <∞.

Proof. As usual, consider ϕ(θ) = f(cos θ) ∈ C2π. Because ϕ is even and twice differentiable,
its Fourier series is an absolutely and uniformly convergent cosine series:

f(cos θ) = ϕ(θ) =
∞∑
k=0

ak cos kθ =
∞∑
k=0

akTk(cos θ),

where |ak| ≤ 2‖ϕ ′′ ‖/k2. Thus, f(x) =
∑∞
k=0 akTk(x).

If we write Sn(f)(x) =
∑n
k=0 akTk(x), we get an interesting consequence of this Theorem.

First, notice that
Sn(f)(cos θ) = sn(ϕ)(θ).

Thus, from Lebesgue’s theorem,

En(f) ≤ ‖f − Sn(f)‖C[−1,1 ] = ‖ϕ− sn(ϕ)‖C2π

≤ (4 + log n)ETn (ϕ) = (4 + log n)En(f).
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For n < 400, this reads

En(f) ≤ ‖f − Sn(f)‖ ≤ 10En(f).

That is, for numerical purposes, the error incurred by using
∑n
k=0 akTk(x) to approximate

f is within one decimal place accuracy of the best approximation! Notice, too, that En(f)
would be very easy to estimate in this case because

En(f) ≤ ‖f − Sn(f)‖ =

∥∥∥∥∥∑
k>n

akTk

∥∥∥∥∥ ≤ ∑
k>n

|ak| ≤ 2 ‖ϕ ′′ ‖
∑
k>n

1
k2
.

Lebesgue’s theorem should remind you of our “fancy” version of Bernstein’s theorem;
if we knew that ETn (f) log n → 0 as n → ∞, then we’d know that sn(f) converged uni-
formly to f . Our goal, then, is to improve our estimates on ETn (f), and the idea behind
these improvements is to replace Dn by a better kernel (with regard to uniform approxima-
tion). Before we pursue anything quite so delicate as an estimate on ETn (f), though, let’s
investigate a simple (and useful) replacement for Dn.

Because the sequence of partial sums (sn) need not converge to f , we might try looking
at their arithmetic means (or Cesàro sums):

σn =
s0 + s1 + · · ·+ sn−1

n
.

(These averages typically have better convergence properties than the partial sums them-
selves. Consider σn in the (scalar) case sn = (−1)n, for example.) Specifically, we set

σn(f)(x) =
1
n

[
s0(f)(x) + · · ·+ sn−1(f)(x)

]
=

1
π

∫ π

−π
f(x+ t)

[
1
n

n−1∑
k=0

Dk(t)

]
dt =

1
π

∫ π

−π
f(x+ t)Kn(t) dt,

where Kn = (D0 +D1 + · · ·+Dn−1)/n is called Fejér’s kernel. The same techniques we used
earlier can be applied to find a closed form for σn(f) which, of course, reduces to simplifying
(D0 +D1 + · · ·+Dn−1)/n. As before, we begin with a trig identity:

2 sin θ
n−1∑
k=0

sin (2k + 1)θ =
n−1∑
k=0

[
cos 2kθ − cos (2k + 2)θ

]
= 1− cos 2nθ = 2 sin2 nθ.

Thus,

Kn(t) =
1
n

n−1∑
k=0

sin (2k + 1) t/2
2 sin (t/2)

=
sin2(nt/2)

2n sin2(t/2)
.

Please note that Kn is even, nonnegative, and 1
π

∫ π
−πKn(t) dt = 1. Thus, σn(f) is a positive,

linear map from C2π onto Tn (but it’s not a projection—why?), satisfying ‖σn(f)‖2 ≤ ‖f‖2
(why?).

Now the arithmetic mean operator σn(f) is still a good approximation f in L2 norm.
Indeed,

‖f − σn(f)‖2 =
1
n

∥∥∥∥∥
n−1∑
k=0

(f − sk(f))

∥∥∥∥∥
2

≤ 1
n

n−1∑
k=0

‖f − sk(f)‖2 → 0
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as n → ∞ (because ‖f − sk(f)‖2 → 0). But, more to the point, σn(f) is actually a good
uniform approximation to f , a fact that we’ll call Fejér’s theorem:

Theorem 6.8. If f ∈ C2π, then σn(f) converges uniformly to f as n→∞.

Note that, because σn(f) ∈ Tn, Fejér’s theorem implies Weierstrass’s second theorem.
Curiously, Fejér was only 19 years old when he proved this result (about 1900) while Weier-
strass was 75 at the time he proved his approximation theorems.

We’ll give two proofs of Fejér’s theorem; one with details, one without. But both follow
from quite general considerations. First:

Theorem 6.9. Suppose that kn ∈ C2π satisfies

(a) kn ≥ 0,

(b)
1
π

∫ π

−π
kn(t) dt = 1, and

(c)
∫
δ≤|t|≤π

kn(t) dt→ 0 for every δ > 0.

Then,
1
π

∫ π

−π
f(x+ t) kn(t) dt ⇒ f(x) for each f ∈ C2π.

Proof. Let ε > 0. Because f is uniformly continuous, we may choose δ > 0 so that |f(x)−
f(x+ t)| < ε, for any x, whenever |t| < δ. Next, we use the fact that kn is nonnegative and
integrates to 1 to write∣∣∣∣f(x)− 1

π

∫ π

−π
f(x+ t) kn(t) dt

∣∣∣∣ =
1
π

∣∣∣∣∫ π

−π

[
f(x)− f(x+ t)

]
kn(t) dt

∣∣∣∣
≤ 1

π

∫ π

−π

∣∣f(x)− f(x+ t)
∣∣ kn(t) dt

≤ ε

π

∫
|t|<δ

kn(t) dt +
2‖f‖
π

∫
δ≤|t|≤π

kn(t) dt

< ε+ ε = 2ε,

for n sufficiently large.

To see that Fejér’s kernel satisfies the conditions of the Theorem is easy: In particular,
(c) follows from the fact that Kn(t) ⇒ 0 on the set δ ≤ |t| ≤ π. Indeed, because sin(t/2)
increases on δ ≤ t ≤ π we have

Kn(t) =
sin2(nt/2)

2n sin2(t/2)
≤ 1

2n sin2(δ/2)
→ 0.

Our second proof, or sketch, really, is based on a variant of the Bohman-Korovkin theo-
rem for C2π due to Korovkin. In this setting, the three “test cases” are

f0(x) = 1, f1(x) = cosx, and f2(x) = sinx.

Theorem 6.10. Let (Ln) be a sequence of positive, linear maps on C2π. If Ln(f) ⇒ f for
each of the three functions f0(x) = 1, f1(x) = cosx, and f2(x) = sinx, then Ln(f) ⇒ f for
every f ∈ C2π.
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We won’t prove this theorem; rather, we’ll check that σn(f) ⇒ f in each of the three
test cases. Because sn is a projection, this is painfully simple!

σn(f0) = 1
n (f0 + f0 + · · ·+ f0) = f0,

σn(f1) = 1
n (0 + f1 + · · ·+ f1) = n−1

n · f1 ⇒ f1,

σn(f2) = 1
n (0 + f2 + · · ·+ f2) = n−1

n · f2 ⇒ f2.

Kernel operators abound in analysis; for example, Landau’s proof of the Weierstrass
theorem uses the kernel Ln(x) = cn(1 − x2)n. And, in the next chapter, we’ll encounter
Jackson’s kernel, Jn(t) = cn sin4 nt/n3 sin4 t, which is essentially the square of Fejér’s kernel.
While we will have no need for a general theory of such operators, please note that the key
to their utility is the fact that they’re nonnegative!

Lastly, a word or two about Fourier series involving complex coefficients. Most modern
textbooks consider the case of a 2π-periodic, integrable function f : R → C and define the
Fourier series of f by

∞∑
k=−∞

cke
ikt,

where now we have only one formula for the ck:

ck =
1

2π

∫ π

−π
f(t) e−ikt dt,

but, of course, the ck may well be complex. This somewhat simpler approach has other
advantages; for one, the exponentials eikt are now an orthonormal set—relative to the
normalizing constant 1/2π. And, if we remain consistent with this choice and define the L2

norm by

‖f‖2 =
(

1
2π

∫ π

−π
|f(t)|2 dt

)1/2

,

then we have the simpler estimate ‖f‖2 ≤ ‖f‖ for f ∈ C2π.
The Dirichlet and Fejer kernels are essentially the same in this case, too, except that we

would now write sn(f)(x) =
∑n
k=−n cke

ikx. Given this, the Dirichlet and Fejér kernels can
be written

Dn(x) =
n∑

k=−n

eikx = 1 +
n∑
k=1

(eikx + e−ikx)

= 1 + 2
n∑
k=1

cos kx

=
sin (n+ 1

2 )x
sin 1

2 x

and

Kn(x) =
1
n

n−1∑
m=0

Dm(x)

=
1
n

n−1∑
m=0

sin (m+ 1
2 )x

sin 1
2 x
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=
sin2(nt/2)
n sin2(t/2)

.

In other words, each is twice its real coefficient counterpart. Because the choice of normal-
izing constant (1/π versus 1/2π, and sometimes even 1/

√
π or 1/

√
2π ) has a (small) effect

on these formulas, you may find some variation in other textbooks.
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Problems

∗ 1. Define f(x) = (π − x)2 for 0 ≤ x ≤ 2π, and extend f to a 2π-periodic continuous
function on R in the obvious way. Check that the Fourier series for f is π2/3 +
4
∑∞
n=1 cosnx/n2. Because this series is uniformly convergent, it actually converges to

f . In particular, note that setting x = 0 yields the familiar formula
∑∞
n=1 1/n2 = π2/6.

2. (a) Given n ≥ 1 and ε > 0, show that there is a continuous function f ∈ C2π

satisfying ‖f‖ = 1 and 1
π

∫ π
−π |f(t)− sgnDn(t)| dt < ε/(n+ 1).

(b) Show that sn(f)(0) ≥ λn − ε and conclude that ‖sn(f)‖ ≥ λn − ε.
3. (a) |Dn(x)| < n+ 1

2 = Dn(0) for 0 < |x| < π.

(b) 2Dn(2x) = U2n(cosx) for 0 ≤ x ≤ π.

(c) T ′2n+1(cosx) = (2n + 1) · 2Dn(2x) for 0 ≤ x ≤ π and, hence, |T ′2n+1(t)| <
(2n+ 1)2 = T ′2n+1(±1) for |t| < 1.

4. (a) If f , k ∈ C2π, prove that g(x) =
∫ π
−π f(x+ t) k(t) dt is also in C2π.

(b) If we only assume that f is 2π-periodic and Riemann integrable on [−π, π ] (but
still k ∈ C2π), is g still continuous?

(c) If we simply assume that f and k are 2π-periodic and Riemann integrable on
[−π, π ], is g still continuous?

5. Let (kn) be a sequence in C2π satisfying the hypotheses of Theorem 6.9. If f is
Riemann integrable, show that 1

π

∫ π
−π f(x + t) kn(t) dt → f(x) pointwise, as n → ∞,

at each point of continuity of f . In particular, conclude that σn(f)(x)→ f(x) at each
point of continuity of f .

∗ 6. Given f , g ∈ C2π, we define the convolution of f and g, written f ∗ g, by

(f ∗ g)(x) =
1
π

∫ π

−π
f(t) g(x− t) dt.

(a) Show that f ∗ g = g ∗ f and that f ∗ g ∈ C2π.

(b) If one of f or g is a trig polynomial, show that f ∗ g is again a trig polynomial
(of the same degree).

(c) If one of f or g is continuously differentiable, show that f ∗ g is likewise continu-
ously differentiable and find an integral formula for (f ∗ g)′(x).

7. Show that the complex Fejér kernel can also be written as Kn(x) = (1/n)
∑n
k=−n

(
n−

|k|
)
eikx.



Chapter 7

Jackson’s Theorems

Direct Theorems

We continue our investigations of the “middle ground” between algebraic and trigonomet-
ric approximation by presenting several results due to the great American mathematician
Dunham Jackson (from roughly 1911–1912). The first of these results will give us the best
possible estimate of En(f) in terms of ωf and n.

Theorem 7.1. If f ∈ C2π, then ETn (f) ≤ 6ωf ([−π, π ]; 1
n ).

Theorem 7.1 should be viewed as an improvement over Bernstein’s Theorem 2.6, which
stated that En(f) ≤ 3

2ωf ( 1√
n

) for f ∈ C[−1, 1 ]. As we’ll see, the proof of Theorem 7.1
not only mimics the proof of Bernstein’s result, but also uses some of the ideas we talked
about in the last chapter. In particular, the proof we’ll give involves integration against an
“improved” Dirichlet kernel.

Before we dive into the proof, let’s list several immediate and important corollaries:

Corollary 7.2. Weierstrass’s Second Theorem.

Proof. ωf ( 1
n )→ 0 for any f ∈ C2π.

Corollary 7.3. (The Dini-Lipschitz Theorem) If ωf ( 1
n ) log n → 0 as n → ∞, then the

Fourier series for f converges uniformly to f .

Proof. From Lebesgue’s theorem (Theorem 6.6),

‖f − sn(f)‖ ≤ (4 + log n)ETn (f) ≤ 6 (4 + log n)ωf

(
1
n

)
→ 0.

Theorem 7.4. If f ∈ C[−1, 1 ], then En(f) ≤ 6ωf ([−1, 1 ]; 1
n ).

Proof. Let ϕ(θ) = f(cos θ). Then, as we’ve seen,

En(f) = ETn (ϕ) ≤ 6ωϕ

(
[−π, π ];

1
n

)
≤ 6ωf

(
[−1, 1 ];

1
n

)
,

where the last inequality follows from the fact that

|ϕ(α)− ϕ(β)| = |f(cosα)− f(cosβ)| ≤ ωf (| cosα− cosβ |) ≤ ωf (|α− β |).

73
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Corollary 7.5. If f ∈ lipKα on [−1, 1 ], then En(f) ≤ 6Kn−α. (Recall that Bernstein’s
theorem gives only n−α/2.)

Corollary 7.6. If f ∈ C[−1, 1 ] has a bounded derivative, then En(f) ≤ 6
n ‖f

′ ‖.

Corollary 7.7. If f ∈ C[−1, 1 ] has a continuous derivative, then En(f) ≤ 6
n En−1(f ′ ).

Proof. Let p∗ ∈ Pn−1 be the best uniform approximation to f ′ and consider p(x) =∫ x
−1
p∗(t) dt ∈ Pn. From the previous Corollary,

En(f) = En(f − p) (Why?)

≤ 6
n
‖f ′ − p∗‖ =

6
n
En−1(f ′ ).

Iterating this last inequality will give the following result:

Corollary 7.8. If f ∈ C[−1, 1 ] is k-times continuously differentiable, then

En(f) ≤ 6k+1

n(n− 1) · · · (n− k + 1)
ωk

(
1

n− k

)
,

where ωk is the modulus of continuity of f (k).

Well, enough corollaries. It’s time we proved Theorem 7.1. Now Jackson’s approach was
to show that

1
π

∫ π

−π
f(x+ t) · cn

(
sinnt
sin t

)4

dt ⇒ f(x),

where Jn(t) = cn(sinnt/ sin t)4 is the improved kernel we alluded to earlier (it’s essentially
the square of Fejér’s kernel). The approach we’ll take, due to Korovkin, proves the existence
of a suitable kernel without giving a tidy formula for it. On the other hand, it’s relatively
easy to outline the idea. The key here is that Jn(t) should be an even, nonnegative, trig
polynomial of degree n with 1

π

∫ π
−π Jn(t) dt = 1. In other words,

Jn(t) =
1
2

+
n∑
k=1

ρk,n cos kt (7.1)

(why is the first term 1/2?), where ρ1,n, . . . , ρn,n must be chosen so that Jn(t) ≥ 0. Assuming
we can find such ρk,n, here’s what we get:

Lemma 7.9. If f ∈ C2π, then∣∣∣∣ f(x)− 1
π

∫ π

−π
f(x+ t) Jn(t) dt

∣∣∣∣ ≤ ωf

(
1
n

)
·

[
1 + nπ

√
1− ρ1,n

2

]
. (7.2)

Proof. We already know how the first several lines of the proof will go:∣∣∣∣ f(x)− 1
π

∫ π

−π
f(x+ t) Jn(t) dt

∣∣∣∣ =
1
π

∣∣∣∣∫ π

−π

[
f(x)− f(x+ t)

]
Jn(t) dt

∣∣∣∣
≤ 1

π

∫ π

−π
|f(x)− f(x+ t)| Jn(t) dt

≤ 1
π

∫ π

−π
ωf ( |t| ) Jn(t) dt. (7.3)
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Next we borrow a trick from Bernstein. We replace ωf ( |t| ) by

ωf ( |t| ) = ωf

(
n|t| · 1

n

)
≤
(
1 + n|t|

)
ωf

(
1
n

)
,

and so the integral in formula (7.3) is dominated by

ωf

(
1
n

)
· 1
π

∫ π

−π

(
1 + n|t|

)
Jn(t) dt = ωf

(
1
n

)
·
[
1 +

n

π

∫ π

−π
|t| Jn(t) dt

]
.

All that remains is to estimate
∫ π
−π |t| Jn(t) dt, and for this we’ll appeal to the Cauchy-

Schwarz inequality (again, compare this to the proof of Bernstein’s theorem).

1
π

∫ π

−π
|t| Jn(t) dt =

1
π

∫ π

−π
|t| Jn(t)1/2Jn(t)1/2 dt

≤
(

1
π

∫ π

−π
|t|2 Jn(t) dt

)1/2( 1
π

∫ π

−π
Jn(t) dt

)1/2

=
(

1
π

∫ π

−π
|t|2 Jn(t) dt

)1/2

.

But,

|t|2 ≤
[
π sin

(
t

2

)]2
=

π2

2
(1− cos t ).

So,
1
π

∫ π

−π
|t| Jn(t) dt ≤

(
π2

2
· 1
π

∫ π

−π
(1− cos t) Jn(t) dt

)1/2

= π

√
1− ρ1,n

2
.

It remains to prove that we can actually find a suitable choice of scalars ρ1,n, . . . , ρn,n.
We already know that we need to choose the ρk,n so that Jn(t) will be nonnegative, but
now it’s clear that we also want ρ1,n to be very close to 1. To get us started, let’s first see
why it’s easy to generate nonnegative cosine polynomials. Given real numbers c0, . . . , cn,
note that

0 ≤

∣∣∣∣∣
n∑
k=0

cke
ikx

∣∣∣∣∣
2

=

(
n∑
k=0

cke
ikx

) n∑
j=0

cje
−ijx


=

∑
k,j

ckcje
i(k−j)x

=
n∑
k=0

c2k +
∑
k>j

ckcj
(
ei(k−j)x + ei(j−k)x

)
=

n∑
k=0

c2k + 2
∑
k>j

ckcj cos(k − j)x

=
n∑
k=0

c2k + 2
n−1∑
k=0

ckck+1 cosx+ · · ·

· · ·+ 2c0cn cosnx.
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In particular, we need to find c0, . . . , cn with

n∑
k=0

c2k =
1
2

and ρ1,n = 2
n−1∑
k=0

ckck+1 ≈ 1.

What we’ll do is find ck with
∑n−1
k=0 ckck+1 ≈

∑n
k=0 c

2
k, and then normalize. But, in fact, we

won’t actually find anything—we’ll simply write down a choice of ck that happens to work!
Consider:

n∑
k=0

sin
(
k + 1
n+ 2

π

)
sin
(
k + 2
n+ 2

π

)
=

n∑
k=0

sin
(
k + 1
n+ 2

π

)
sin
(

k

n+ 2
π

)

=
1
2

n∑
k=0

[
sin
(

k

n+ 2
π

)
+ sin

(
k + 2
n+ 2

π

)]
sin
(
k + 1
n+ 2

π

)
. (7.4)

By changing the index of summation, it’s easy to see that the first two sums are equal and,
hence, each is equal to the average of the two. Next we re-write the last sum in (7.4), using
the trig identity 1

2

(
sinA+ sinB

)
= cos

(
A−B

2

)
sin
(
A+B

2

)
, to get

n∑
k=0

sin
(
k + 1
n+ 2

π

)
sin
(
k + 2
n+ 2

π

)
= cos

(
π

n+ 2

) n∑
k=0

sin2

(
k + 1
n+ 2

π

)
.

Because cos
(

π
n+2

)
≈ 1 for large n, we’ve done it! If we define ck = c · sin

(
k+1
n+2 π

)
, where

c is chosen so that
∑n
k=0 c

2
k = 1/2, and if we define Jn(x) using (7.1), where ρk,n = ck,

then Jn(x) ≥ 0 and ρ1,n = cos
(

π
n+2

)
(why?). The conclusion of Lemma 7.9; that is, the

right-hand side of equation (7.2), can now be revised:

√
1− ρ1,n

2
=

√√√√ 1− cos
(

π
n+2

)
2

= sin
(

π

2n+ 4

)
≤ π

2n
,

which allows us to conclude that

ETn (f) ≤
(

1 +
π2

2

)
ωf

(
1
n

)
< 6ωf

(
1
n

)
.

This proves Theorem 7.1.

Inverse Theorems

Jackson’s theorems are what we might call direct theorems. If we know something about f ,
then we can say something about En(f). There is also the notion of an inverse theorem,
meaning that if we know something about En(f), we should be able to say something about
f . In other words, we would expect an inverse theorem to be, more or less, the converse of
some direct theorem. Now inverse theorems are typically much harder to prove than direct
theorems, but in order to have some idea of what such theorems might tell us (and to see
some of the techniques used in their proofs), we present one of the easier inverse theorems,
due to Bernstein. This result yields a (partial) converse to Corollary 7.5.
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Theorem 7.10. If f ∈ C2π satisfies ETn (f) ≤ An−α, for some constants A and 0 < α < 1,
then f ∈ lipKα for some constant K.

Proof. For each n, choose Sn ∈ Tn so that ‖f − Sn‖ ≤ An−α. Then, in particular, (Sn)
converges uniformly to f . Now if we set V0 = S1 and Vn = S2n − S2n−1 for n ≥ 1, then
Vn ∈ T2n and f =

∑∞
n=0 Vn. Indeed,

‖Vn‖ ≤ ‖S2n − f‖+ ‖S2n−1 − f‖ ≤ A (2n)−α +A (2n−1)−α = B · 2−nα,

which is summable; thus, the (telescoping) series
∑∞
n=0 Vn converges uniformly to f . (Why?)

Next we estimate |f(x)− f(y)| using finitely many of the Vn, the precise number to be
specified later. Using the mean value theorem and Bernstein’s inequality we get

|f(x)− f(y)| ≤
∞∑
n=0

|Vn(x)− Vn(y)|

≤
m−1∑
n=0

|Vn(x)− Vn(y)| + 2
∞∑
n=m

‖Vn‖

=
m−1∑
n=0

|V ′n(ξn)| |x− y| + 2
∞∑
n=m

‖Vn‖

≤ |x− y|
m−1∑
n=0

2n‖Vn‖ + 2
∞∑
n=m

‖Vn‖ (7.5)

≤ |x− y|
m−1∑
n=0

B 2n(1−α) + 2
∞∑
n=m

B 2−nα

≤ C
[
|x− y| · 2m(1−α) + 2−mα

]
, (7.6)

where we’ve used, in (7.5), the fact that Vn ∈ T2n and, in (7.6), standard estimates for
geometric series. Now we want the right-hand side to be dominated by a constant times
|x− y|α. In other words, if we set |x− y| = δ, then we want

δ · 2m(1−α) + 2−mα ≤ D · δα

or, equivalently,
(2mδ)(1−α) + (2mδ)−α ≤ D. (7.7)

Thus, we should choose m so that 2mδ is both bounded above and bounded away from zero.
For example, if 0 < δ < 1, we could choose m so that 1 ≤ 2mδ < 2.

In order to better explain the phrase “more or less the converse of some direct theorem,”
let’s see how the previous result falls apart when α = 1. Although we might hope that
ETn (f) ≤ A/n would imply that f ∈ lipK1, it happens not to be true. The best result
in this regard is due to Zygmund, who gave necessary and sufficient conditions on f so
that ETn (f) ≤ A/n (and these conditions do not characterize lipK1 functions). Instead of
pursuing Zygmund’s result, we’ll settle for simple “surgery” on our previous result, keeping
an eye out for what goes wrong. This result is again due to Bernstein.

Theorem 7.11. If f ∈ C2π satisfies ETn (f) ≤ A/n, then ωf (δ) ≤ Kδ| log δ | for some
constant K and all δ sufficiently small.
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Proof. If we repeat the previous proof, setting α = 1, only a few lines change. In particular,
the conclusion of that long string of inequalities, ending with (7.6), would now read

|f(x)− f(y)| ≤ C
[
|x− y| ·m + 2−m

]
= C

[
mδ + 2−m

]
.

Clearly, the right-hand side cannot be dominated by a constant times δ, as we might have
hoped, for this would force m to be bounded (independent of δ), which in turn bounds
δ away from zero. But, if we again think of 2mδ as the “variable” in this inequality (as
suggested by formula (7.7) and the concluding lines of the previous proof), then the term
mδ suggests that the correct order of magnitude of the right-hand side is δ| log δ |. Thus, we
would try to find a constant D so that

mδ + 2−m ≤ D · δ| log δ |

or
m(2mδ) + 1 ≤ D · (2mδ)| log δ |.

Now if we take 0 < δ < 1/2, then log 2 < − log δ = | log δ |. Hence, if we again choose m ≥ 1
so that 1 ≤ 2mδ < 2, we’ll get

m log 2 + log δ < log 2 =⇒ m <
log 2− log δ

log 2
<

2
log 2

| log δ |

and, finally,

m(2mδ) + 1 ≤ 2m+ 1 ≤ 3m ≤ 6
log 2

| log δ | ≤ 6
log 2

(2mδ) | log δ |.



Chapter 8

Orthogonal Polynomials

Given a positive (except possibly at finitely many points), Riemann integrable weight func-
tion w(x) on [ a, b ], the expression

〈f, g〉 =
∫ b

a

f(x) g(x)w(x) dx

defines an inner product on C[ a, b ] and

‖f‖2 =

(∫ b

a

f(x)2 w(x) dx

)1/2

=
√
〈f, f〉

defines a strictly convex norm on C[ a, b ]. (See Problem 1 at the end of the chapter.) Thus,
given a finite dimensional subspace E of C[ a, b ] and an element f ∈ C[ a, b ], there is a
unique g ∈ E such that

‖f − g‖2 = min
h∈E
‖f − h‖2.

We say that g is the least-squares approximation to f out of E (relative to w).
Now if we apply the Gram-Schmidt procedure to the sequence 1, x, x2, . . ., we will arrive

at a sequence (Qn) of orthogonal polynomials relative to the above inner product. In this
special case, however, the Gram-Schmidt procedure simplifies substantially:

Theorem 8.1. The following procedure defines a sequence (Qn) of orthogonal polynomials
(relative to w). Set:

Q0(x) = 1, Q1(x) = x− a0 = (x− a0)Q0(x),

and
Qn+1(x) = (x− an)Qn(x)− bnQn−1(x),

for n ≥ 1, where

an = 〈xQn, Qn 〉
/
〈Qn, Qn 〉 and bn = 〈xQn, Qn−1 〉

/
〈Qn−1, Qn−1 〉

(and where xQn is shorthand for the polynomial xQn(x)).

79
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Proof. It’s easy to see from these formulas that Qn is a monic polynomial of degree exactly
n. In particular, the Qn are linearly independent (and nonzero).

Now it’s easy to see that Q0, Q1, and Q2 are mutually orthogonal, so let’s use induction
and check that Qn+1 is orthogonal to each Qk, k ≤ n. First,

〈Qn+1, Qn 〉 = 〈xQn, Qn 〉 − an〈Qn, Qn 〉 − bn〈Qn−1, Qn 〉 = 0

and
〈Qn+1, Qn−1 〉 = 〈xQn, Qn−1 〉 − an〈Qn, Qn−1 〉 − bn〈Qn−1, Qn−1 〉 = 0,

because 〈Qn−1, Qn 〉 = 0. Next, we take k < n− 1 and use the recurrence formula twice:

〈Qn+1, Qk 〉 = 〈xQn, Qk 〉 − an〈Qn, Qk 〉 − bn〈Qn−1, Qk 〉
= 〈xQn, Qk 〉 = 〈Qn, xQk 〉 (Why?)
= 〈Qn, Qk+1 + akQk + bkQk−1 〉 = 0,

because k + 1 < n.

Remarks 8.2.

1. Using the same trick as above, we have

bn = 〈xQn, Qn−1 〉
/
〈Qn−1, Qn−1 〉 = 〈Qn, Qn 〉

/
〈Qn−1, Qn−1 〉 > 0.

2. Each p ∈ Pn can be uniquely written p =
∑n
i=0 αiQi, where αi = 〈 p,Qi 〉

/
〈Qi, Qi 〉.

3. If Q is any monic polynomial of degree exactly n, then Q = Qn +
∑n−1
i=0 αiQi (why?)

and hence

‖Q‖22 = ‖Qn‖22 +
n−1∑
i=0

α2
i ‖Qi‖22 > ‖Qn‖22,

unless Q = Qn. That is, Qn has the least ‖ · ‖2 norm of all monic polynomials of
degree n.

4. The Qn are unique in the following sense: If (Pn) is another sequence of orthogonal
polynomials such that Pn has degree exactly n, then Pn = αnQn for some αn 6= 0.
(See Problem 4.) Consequently, there’s no harm in referring to the Qn as the sequence
of orthogonal polynomials relative to w.

5. For n ≥ 1 note that
∫ b
a
Qn(t)w(t) dt = 〈Q0, Qn〉 = 0.

Examples 8.3.

1. On [−1, 1 ], the Chebyshev polynomials of the first kind (Tn) are orthogonal relative
to the weight w(x) = 1/

√
1− x2.∫ 1

−1

Tm(x)Tn(x)
dx√

1− x2
=

∫ π

0

cosmθ cosnθ dθ

=


0, m 6= n
π, m = n = 0
π/2, m = n 6= 0.
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Because Tn has degree exactly n, this must be the right choice. Notice, too, that
1√
2
T0, T1, T2, . . . are orthonormal relative to the weight 2/π

√
1− x2.

In terms of the inductive procedure given above, we must have Q0 = T0 = 1 and
Qn = 2−n+1Tn for n ≥ 1. (Why?) From this it follows that an = 0, b1 = 1/2, and
bn = 1/4 for n ≥ 2. (Why?) That is, the recurrence formula given in Theorem 8.1
reduces to the familar relationship Tn+1(x) = 2xTn(x) − Tn−1(x). Curiously, Qn =
2−n+1Tn minimizes both

max
−1≤x≤1

|p(x)| and
(∫ 1

−1

p(x)2
dx√

1− x2

)1/2

over all monic polynomials of degree exactly n.

The Chebyshev polynomials also satisfy (1 − x2)T ′′n (x) − xT ′n(x) + n2 Tn(x) = 0.
Because this is a polynomial identity, it suffices to check it for all x = cos θ. In this
case,

T ′n(x) =
n sinnθ

sin θ

and

T ′′n (x) =
n2 cosnθ sin θ − n sinnθ cos θ

sin2 θ (− sin θ)
.

Hence,

(1− x2)T ′′n (x)− xT ′n(x) + n2 Tn(x)
= −n2 cosnθ + n sinnθ cot θ − n sinnθ cot θ + n2 cos θ = 0

2. On [−1, 1 ], the Chebyshev polynomials of the second kind (Un) are orthogonal relative
to the weight w(x) =

√
1− x2. Indeed,∫ 1

−1

Um(x)Un(x) (1− x2)
dx√

1− x2

=
∫ π

0

sin (m+ 1)θ
sin θ

· sin (n+ 1)θ
sin θ

· sin2 θ dθ =
{

0, m 6= n
π/2, m = n.

While we’re at it, notice that

T ′n(x) =
n sinnθ

sin θ
= nUn−1(x).

As a rule, the derivatives of a sequence of orthogonal polynomials are again orthogonal
polynomials, but relative to a different weight.

3. On [−1, 1 ] with weight w(x) ≡ 1, the sequence (Pn) of Legendre polynomials are
orthogonal, and are typically normalized by Pn(1) = 1. The first few Legendre poly-
nomials are P0(x) = 1, P1(x) = x, P2(x) = 3

2 x
2 − 1

2 , and P3(x) = 5
2 x

3 − 3
2 x. (Check

this!) After we’ve seen a few more examples, we’ll come back and give an explicit
formula for Pn.
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4. All of the examples we’ve seen so far are special cases of the following: On [−1, 1 ],
consider the weight w(x) = (1 − x)α(1 + x)β , where α, β > −1. The corresponding
orthogonal polynomials (P (α,β)

n ) are called the Jacobi polynomials and are typically
normalized by requiring that

P (α,β)
n (1) =

(
n+ α

α

)
≡ (α+ 1)(α+ 2) · · · (α+ n)

n!
.

It follows that P (0,0)
n = Pn,

P (−1/2,−1/2)
n =

1 · 3 · 5 · · · (2n− 1)
2nn!

Tn,

and

P (1/2,1/2)
n =

1 · 3 · 5 · · · (2n+ 1)
2n(n+ 1)!

Un.

The polynomials P (α,α)
n are called ultraspherical polynomials.

5. There are also several classical examples of orthogonal polynomials on unbounded
intervals. In particular,

(0,∞) w(x) = e−x Laguerre polynomials,
(0,∞) w(x) = xαe−x generalized Laguerre polynomials,

(−∞,∞) w(x) = e−x
2

Hermite polynomials.

Because Qn is orthogonal to every element of Pn−1, a fuller understanding of Qn will
follow from a characterization of the orthogonal complement of Pn−1. We begin with an
easy fact about least-squares approximations in inner product spaces.

Lemma 8.4. Let E be a finite dimensional subspace of an inner product space X, and let
x ∈ X \ E. Then, y∗ ∈ E is the least-squares approximation to x out of E (a.k.a. the
nearest point to x in E) if and only if 〈x− y∗, y〉 = 0 for every y ∈ E; that is, if and only
if (x− y∗) ⊥ E.

Proof. [We’ve taken E to be finite dimensional so that nearest points will exist; because X
is an inner product space, nearest points must also be unique (see Problem 1 for a proof
that every inner product norm is strictly convex).]

(⇐=) First suppose that (x− y∗) ⊥ E. Then, given any y ∈ E, we have

‖x− y‖22 = ‖(x− y∗) + (y∗ − y)‖22 = ‖x− y∗‖22 + ‖y∗ − y‖22,

because y∗−y ∈ E and, hence, (x−y∗) ⊥ (y∗−y). Thus, ‖x−y‖ > ‖x−y∗‖ unless y = y∗;
that is, y∗ is the (unique) nearest point to x in E.

(=⇒) Suppose that x−y∗ is not orthogonal to E. Then there is some y ∈ E with ‖y‖ = 1
such that α = 〈x− y∗, y〉 6= 0. It now follows that y∗+αy ∈ E is a better approximation to
x than y∗ (and y∗ + αy 6= y∗, of course); that is, y∗ is not the least-squares approximation
to x. To see this, we again compute:

‖x− (y∗ + αy)‖22 = ‖(x− y∗)− αy‖22 = 〈(x− y∗)− αy, (x− y∗)− αy〉
= ‖x− y∗‖22 − 2α 〈x− y∗, y〉+ α2

= ‖x− y∗‖22 − α2 < ‖x− y∗‖22.

Thus, we must have 〈x− y∗, y〉 = 0 for every y ∈ E.
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Lemma 8.5. (Integration by-parts)∫ b

a

u(n)v =
n∑
k=1

(−1)k−1u(n−k)v(k−1)
]b
a

+ (−1)n
∫ b

a

uv(n).

Now if v is a polynomial of degree < n, then v(n) = 0 and we get:

Lemma 8.6. f ∈ C[ a, b ] satisfies
∫ b

a

f(x) p(x)w(x) dx = 0 for all polynomials p ∈ Pn−1 if

and only if there is an n-times differentiable function u on [ a, b ] satisfying fw = u(n) and
u(k)(a) = u(k)(b) = 0 for all k = 0, 1, . . . , n− 1.

Proof. One direction is clear from Lemma 8.5: Given u as above, we would have
∫ b
a
fpw =∫ b

a
u(n)p = (−1)n

∫ b
a
up(n) = 0.

So, suppose we have that
∫ b
a
fpw = 0 for all p ∈ Pn−1. By integrating fw repeatedly,

choosing constants appropriately, we may define a function u satisfying fw = u(n) and
u(k)(a) = 0 for all k = 0, 1, . . . , n − 1. We want to show that the hypotheses on f force
u(k)(b) = 0 for all k = 0, 1, . . . , n− 1.

Now Lemma 8.5 tells us that

0 =
∫ b

a

fpw =
n∑
k=1

(−1)k−1u(n−k)(b) p(k−1)(b)

for all p ∈ Pn−1. But the numbers p(b), p′(b), . . . , p(n−1)(b) are completely arbitrary; that is
(again by integrating repeatedly, choosing our constants as we please), we can find polynomi-
als pk of degree k < n such that p(k)

k (b) 6= 0 and p(j)
k (b) = 0 for j 6= k. In fact, pk(x) = (x−b)k

works just fine! In any case, we must have u(k)(b) = 0 for all k = 0, 1, . . . , n− 1.

Rolle’s theorem tells us a bit more about the functions orthogonal to Pn−1:

Lemma 8.7. If w(x) > 0 in (a, b), and if f ∈ C[ a, b ] is in the orthogonal complement
of Pn−1 (relative to w); that is, if f satisfies

∫ b
a
f(x) p(x)w(x) dx = 0 for all polynomials

p ∈ Pn−1, then f has at least n distinct zeros in the open interval (a, b).

Proof. Write fw = u(n), where u(k)(a) = u(k)(b) = 0 for all k = 0, 1, . . . , n−1. In particular,
because u(a) = u(b) = 0, Rolle’s theorem tells us that u′ would have at least one zero in
(a, b). But then u′(a) = u′(c) = u′(b) = 0, and so u′′ must have at least two zeros in (a, b).
Continuing, we find that fw = u(n) must have at least n zeros in (a, b). Because w > 0, the
result follows.

Corollary 8.8. Let (Qn) be the sequence of orthogonal polynomials associated to a given
weight w with w > 0 in (a, b). Then, the roots of Qn are real, simple, and lie in (a, b).

The sheer volume of literature on orthogonal polynomials and other “special functions” is
truly staggering. We’ll content ourselves with the Legendre and the Chebyshev polynomials.
In particular, let’s return to the problem of finding an explicit formula for the Legendre
polynomials. We could, as Rivlin does, use induction and a few observations that simplify
the basic recurrence formula (you’re encouraged to read this; see [45, pp. 53–54]). Instead
we’ll give a simple (but at first sight intimidating) formula that is of use in more general
settings than ours.
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Lemma 8.6 (with w ≡ 1 and [ a, b ] = [−1, 1 ]) says that if we want to find a polynomial
f of degree n which is orthogonal to Pn−1, then we’ll need to take a polynomial for u,
and this u will have to be divisible by (x − 1)n(x + 1)n. (Why?) That is, we must have
Pn(x) = cn ·Dn

[
(x2− 1)n

]
, where D denotes differentiation, and where cn is chosen so that

Pn(1) = 1.

Lemma 8.9. (Leibniz’s formula) Dn(fg) =
n∑
k=0

(
n

k

)
Dk(f)Dn−k(g).

Proof. Induction and the fact that
(
n−1
k−1

)
+
(
n−1
k

)
=
(
n
k

)
.

Consequently, Q(x) = Dn
[
(x− 1)n(x+ 1)n

]
=
∑n
k=0

(
n
k

)
Dk(x− 1)nDn−k(x+ 1)n and

it follows that Q(1) = 2nn! and Q(−1) = (−1)n2nn!. This, finally, gives us the formula
discovered by Rodrigues in 1814:

Pn(x) =
1

2nn!
Dn
[
(x2 − 1)n

]
. (8.1)

The Rodrigues formula is quite useful (and easily generalizes to the Jacobi polynomials).

Remarks 8.10.

1. By Corollary 8.8, the roots of Pn are real, distinct, and lie in (−1, 1).

2. From the binomial theorem, (x2 − 1)n =
∑n
k=0(−1)k

(
n
k

)
x2n−2k. If we apply 1

2nn! D
n

and simplify, we get another formula for the Legendre polynomials.

Pn(x) =
1
2n

[n/2]∑
k=0

(−1)k
(
n

k

)(
2n− 2k

n

)
xn−2k.

In particular, if n is even (odd), then Pn is even (odd). Notice, too, that if we let
P̃n denote the polynomial given by the standard construction, then we must have
Pn = 2−n

(
2n
n

)
P̃n.

3. In terms of our standard recurrence formula, it follows that an = 0 (because xPn(x)2

is always odd). It remains to compute bn. First, integrating by parts,∫ 1

−1

Pn(x)2 dx = xPn(x)2
]1
−1
−
∫ 1

−1

x · 2Pn(x)P ′n(x) dx,

or 〈Pn, Pn 〉 = 2 − 2〈Pn, xP ′n 〉. But xP ′n = nPn + lower degree terms; hence,
〈Pn, xP ′n 〉 = n〈Pn, Pn 〉. Thus, 〈Pn, Pn 〉 = 2/(2n + 1). Using this and the fact
that Pn = 2−n

(
2n
n

)
P̃n, we’d find that bn = n2/(4n2 − 1). Thus,

Pn+1 = 2−n−1

(
2n+ 2
n+ 1

)
P̃n+1

= 2−n−1

(
2n+ 2
n+ 1

)[
x P̃n −

n2

(4n2 − 1)
P̃n−1

]
=

2n+ 1
n+ 1

xPn −
n

n+ 1
Pn−1.

That is, the Legendre polynomials satisfy the recurrence formula

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x).
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4. It follows from the calculations in remark 3, above, that the sequence P̂n =
√

2n+1
2 Pn

is orthonormal on [−1, 1 ].

5. The Legendre polynomials satisfy the differential equation (1−x2)P ′′n (x)−2xP ′n(x)+
n (n + 1)Pn(x) = 0. If we set u = (x2 − 1)n; that is, if u(n) = 2nn!Pn, note that
(x2 − 1)u′ = 2nxu. Now we apply Dn+1 to both sides of this last equation (using
Leibniz’s formula) and simplify:

u(n+2)(x2 − 1) + (n+ 1)u(n+1) 2x+ (n+1)n
2 u(n) 2

= 2n
[
u(n+1) x+ (n+ 1)u(n)

]
=⇒ (1− x2)u(n+2) − 2xu(n+1) + n (n+ 1)u(n) = 0.

6. Through a series of exercises, similar in spirit to remark 5, Rivlin shows that |Pn(x)| ≤
1 on [−1, 1 ]. See [45, pp. 63–64] for details.

Given an orthogonal sequence, it makes sense to consider generalized Fourier series
relative to the sequence and to find analogues of the Dirichlet kernel, Lebesgue’s theorem,
and so on. In case of the Legendre polynomials we have the following:

Example 8.11. The Fourier-Legendre series for f ∈ C[−1, 1 ] is given by
∑
k〈 f, P̂k 〉 P̂k,

where

P̂k =

√
2k + 1

2
Pk and 〈 f, P̂k 〉 =

∫ 1

−1

f(x) P̂k(x) dx.

The partial sum operator Sn(f) =
∑n
k=0〈 f, P̂k 〉 P̂k is a linear projection onto Pn and may

be written as

Sn(f)(x) =
∫ 1

−1

f(t)Kn(t, x) dt,

where Kn(t, x) =
∑n
k=0 P̂k(t) P̂k(x). (Why?)

Because the polynomials P̂k are orthonormal, we have
n∑
k=0

|〈 f, P̂k 〉|2 = ‖Sn(f)‖22 ≤ ‖f‖22 =
∞∑
k=0

|〈 f, P̂k 〉|2,

and so the generalized Fourier coefficients 〈 f, P̂k 〉 are square summable; in particular,
〈 f, P̂k 〉 → 0 as k → ∞. As in the case of Fourier series, the fact that the polynomials
(i.e., the span of the P̂k) are dense in C[ a, b ] implies that Sn(f) actually converges to f
in the ‖ · ‖2 norm. These same observations remain valid for any sequence of orthogonal
polynomials. The real question remains, just as with Fourier series, whether Sn(f) is a good
uniform (or even pointwise) approximation to f .

If you’re willing to swallow the fact that |Pn(x)| ≤ 1, we get

|Kn(t, x)| ≤
n∑
k=0

√
2k + 1

2

√
2k + 1

2
=

1
2

n∑
k=0

(2k + 1) =
(n+ 1)2

2
.

Hence, ‖Sn(f)‖ ≤ (n+ 1)2‖f‖. That is, the Lebesgue numbers for this process are at most
(n+ 1)2. The analogue of Lebesgue’s theorem in this case would then read:

‖f − Sn(f)‖ ≤ Cn2En(f).
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Thus, Sn(f) ⇒ f whenever n2En(f) → 0, and Jackson’s theorem tells us when this will
happen: If f is twice continuously differentiable, then the Fourier-Legendre series for f
converges uniformly to f on [−1, 1 ].

The Christoffel-Darboux Identity

It would also be of interest to have a closed form for Kn(t, x). That this is indeed always
possible, for any sequence of orthogonal polynomials, is a very important fact.

Using our original notation, let (Qn) be the sequence of monic orthogonal polynomials
corresponding to a given weight w, and let (Q̂n) be the orthonormal counterpart of (Qn);
in other words, Qn = λnQ̂n, where λn =

√
〈Qn, Qn 〉 . It will help things here if you recall

(from Remarks 8.2 (1)) that λ2
n = bnλ

2
n−1.

As with the Legendre polynomials, each f ∈ C[ a, b ] is represented by a generalized
Fourier series

∑
k〈 f, Q̂k 〉 Q̂k with partial sum operator

Sn(f)(x) =
∫ b

a

f(t)Kn(t, x)w(t) dt,

where Kn(t, x) =
∑n
k=0 Q̂k(t) Q̂k(x). As before, Sn is a projection onto Pn; in particular,

Sn(1) = 1 for every n.

Theorem 8.12. (Christoffel-Darboux) The kernel Kn(t, x) can be written

n∑
k=0

Q̂k(t) Q̂k(x) = λn+1λ
−1
n

Q̂n+1(t) Q̂n(x)− Q̂n(t) Q̂n+1(x)
t− x

.

Proof. We begin with the standard recurrence formulas

Qn+1(t) = (t− an)Qn(t)− bnQn−1(t)
Qn+1(x) = (x− an)Qn(x)− bnQn−1(x)

(where b0 = 0). Multiplying the first by Qn(x), the second by Qn(t), and subtracting:

Qn+1(t)Qn(x)−Qn(t)Qn+1(x)
= (t− x)Qn(t)Qn(x) + bn

[
Qn(t)Qn−1(x) − Qn(x)Qn−1(t)

]
(and again, b0 = 0). If we divide both sides of this equation by λ2

n we get

λ−2
n

[
Qn+1(t)Qn(x)−Qn(t)Qn+1(x)

]
= (t− x) Q̂n(t) Q̂n(x) + λ−2

n−1

[
Qn(t)Qn−1(x) − Qn(x)Qn−1(t)

]
.

Thus, we may repeat the process; arriving finally at

λ−2
n

[
Qn+1(t)Qn(x)−Qn(t)Qn+1(x)

]
= (t− x)

n∑
k=0

Q̂k(t) Q̂k(x).

The Christoffel-Darboux identity now follows by writing Qn = λnQ̂n, etc.

And we now have a version of the Dini-Lipschitz theorem (Theorem 7.3).
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Theorem 8.13. Let f ∈ C[ a, b ] and suppose that at some point x0 in [ a, b ] we have

(i) f is Lipschitz at x0; that is, |f(x0)− f(x)| ≤ K|x0 − x| for some constant K and all
x in [ a, b ]; and

(ii) the sequence
(
Q̂n(x0)

)
is bounded.

Then, the series
∑
k〈 f, Q̂k 〉 Q̂k(x0) converges to f(x0).

Proof. First note that the sequence λn+1λ
−1
n is bounded: Indeed, by Cauchy-Schwarz,

λ2
n+1 = 〈Qn+1, Qn+1 〉 = 〈Qn+1, xQn 〉

≤ ‖Qn+1‖2 · ‖x ‖ · ‖Qn‖2 = max{|a|, |b|}λn+1λn.

Thus, λn+1λ
−1
n ≤ c = max{|a|, |b|}. Now, using the Christoffel-Darboux identity,

Sn(f)(x0)− f(x0) =
∫ b
a

[
f(t)− f(x0)

]
Kn(t, x0)w(t) dt

= λn+1λ
−1
n

∫ b

a

f(t)− f(x0)
t− x0

[
Q̂n+1(t) Q̂n(x0)− Q̂n(t) Q̂n+1(x0)

]
w(t) dt

= λn+1λ
−1
n

[
〈h, Q̂n+1 〉 Q̂n(x0)− 〈h, Q̂n 〉 Q̂n+1(x0)

]
,

where h(t) = (f(t) − f(x0))/(t − x0). But h is bounded (and continuous everywhere ex-
cept, possibly, at x0) by hypothesis (i), λn+1λ

−1
n is bounded, and Q̂n(x0) is bounded by

hypothesis (ii). All that remains is to notice that the numbers 〈h, Q̂n 〉 are the generalized
Fourier coefficients of the bounded, Riemann integrable function h, and so must tend to
zero (because, in fact, they’re even square summable).

We end this chapter with a negative result, due to Nikolaev:

Theorem 8.14. There is no weight w such that every f ∈ C[ a, b ] has a uniformly conver-
gent expansion in terms of orthogonal polynomials. In fact, given any w, there is always
some f for which ‖f − Sn(f)‖ is unbounded.
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Problems

. 1. Prove that every inner product norm is strictly convex. Specifically, let 〈·, ·〉 be an
inner product on a vector space X, and let ‖x‖ =

√
〈x, x〉 be the associated norm.

Show that:

(a) ‖x+y‖2+‖x−y‖2 = 2 (‖x‖2+‖y‖2) for all x, y ∈ X (the parallelogram identity).

(b) If ‖x‖ = r = ‖y‖ and if ‖x − y‖ = δ, then
∥∥x+y

2

∥∥2
= r2 − (δ/2)2. In particular,∥∥x+y

2

∥∥ < r whenever x 6= y.

The remaining problems follow the notation given on page 79.

. 2. (a) Show that the expression ‖f‖1 =
∫ b
a
|f(t)|w(t) dt also defines a norm on C[ a, b ].

(b) Given any f in C[ a, b ], show that ‖f‖1 ≤ c‖f‖2 and ‖f‖2 ≤ c‖f‖, where c =(∫ b
a
w(t) dt

)1/2

.

(c) Conclude that the polynomials are dense in C[ a, b ] under all three of the norms
‖ · ‖1, ‖ · ‖2, and ‖ · ‖.

(d) Show that C[ a, b ] is not complete under either of the norms ‖ · ‖1 or ‖ · ‖2.

3. Check that Qn is a monic polynomial of degree exactly n.

4. If (Pn) is another sequence of orthogonal polynomials such that Pn has degree exactly
n, for each n, show that Pn = αnQn for some αn 6= 0. In particular, if Pn is a monic
polynomial, then Pn = Qn. [Hint: Choose αn so that Pn − αnQn ∈ Pn−1 and note
that (Pn − αnQn) ⊥ Pn−1. Conclude that Pn − αnQn = 0.]

5. Given w > 0, f ∈ C[ a, b ], and n ≥ 1, show that p∗ ∈ Pn−1 is the least-squares
approximation to f out of Pn−1 (with respect to w) if and only if 〈f − p∗ , p 〉 = 0 for
every p ∈ Pn−1; that is, if and only if (f − p∗) ⊥ Pn−1.

6. In the notation of Problem 5, show that f − p∗ has at least n distinct zeros in (a, b).

7. If w > 0, show that the least-squares approximation to f(x) = xn out of Pn−1 (relative
to w) is q∗n−1(x) = xn −Qn(x).

. 8. Given f ∈ C[ a, b ], let p∗n denote the best uniform approximation to f out of Pn and
let q∗n denote the least-squares approximation to f out of Pn. Show that ‖f − q∗n‖2 ≤
‖f − p∗n‖2 and conclude that ‖f − q∗n‖2 → 0 as n→∞.

9. Show that the Chebyshev polynomials of the first kind, (Tn), and of the second kind,
(Un), satisfy the identities

Tn(x) = Un(x)− xUn−1(x)

and
(1− x2)Un−1(x) = xTn(x)− Tn+1(x).

10. Show that the Chebyshev polynomials of the second kind, (Un), satisfy the recurrence
relation

Un+1(x) = 2xUn(x)− Un−1(x), n ≥ 1,

where U0(x) = 1 and U1(x) = 2x. [Compare this with the recurrence relation satisfied
by the Tn.]



Chapter 9

Gaussian Quadrature

Introduction

Numerical integration, or quadrature, is the process of approximating the value of a definite
integral

∫ b
a
f(x)w(x) dx based only on a finite number of values or “samples” of f (much

like a Riemann sum). A linear quadrature formula takes the form∫ b

a

f(x)w(x) dx ≈
n∑
k=1

Akf(xk),

where the nodes (xk) and the weights (Ak) are at our disposal. (Note that both sides of the
formula are linear in f .)

Example 9.1. Consider the quadrature formula

I(f) =
∫ 1

−1

f(x) dx ≈ 1
n

n−1∑
k=−n

f

(
2k + 1

2n

)
= In(f).

If f is continuous, then we clearly have In(f) →
∫ 1

−1
f as n → ∞. (Why?) But in the

particular case f(x) = x2 we have (after some simplification)

In(f) =
1
n

n−1∑
k=−n

(
2k + 1

2n

)2

=
1

2n3

n−1∑
k=0

(2k + 1)2 =
2
3
− 1

6n2
.

That is, | In(f) − I(f) | = 1/6n2. In particular, we would need to take n ≥ 130 to get
1/6n2 ≤ 10−5, for example, and this would require that we perform over 250 evaluations of
f . We’d like a method that converges a bit faster! In other words, there’s no shortage of
quadrature formulas—we just want faster ones.

A reasonable requirement for our proposed quadrature formula is that it be exact for
polynomials of low degree. As it happens, this is easy to do.

Lemma 9.2. Given w(x) on [ a, b ] and nodes a ≤ x1 < · · · < xn ≤ b, there exist unique
weights A1, . . . , An such that ∫ b

a

p(x)w(x) dx =
n∑
i=1

Ai p(xi)

89
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for all polynomials p ∈ Pn−1.

Proof. Let `1, . . . , `n be the Lagrange interpolating polynomials of degree n− 1 associated
to the nodes x1, . . . , xn. Recall that we have p =

∑n
i=1 p(xi) `i for all p ∈ Pn−1. Hence,∫ b

a

p(x)w(x) dx =
n∑
i=1

p(xi)
∫ b

a

`i(x)w(x) dx.

That is, Ai =
∫ b
a
`i(x)w(x) dx works. To see that this is the only choice, suppose that∫ b

a

p(x)w(x) dx =
n∑
i=1

Bi p(xi)

is exact for all p ∈ Pn−1, and consider the case p = `j :

Aj =
∫ b

a

`j(x)w(x) dx =
n∑
i=1

Bi `j(xi) = Bj .

The point here is that integration is linear. In particular, when restricted to Pn−1,
integration is completely determined by its action on a basis for Pn−1—in this setting, by
the n values Ai = I(`i), i = 1, . . . , n.

Said another way: Because the points x1, . . . , xn are distinct, the n point evaluations
δi(p) = p(xi) satisfy Pn−1 ∩

(⋂n
i=1 ker δi

)
= {0}, and it follows that every linear, real-

valued function on Pn−1 must be a linear combination of the δi. Here’s why: Because the
xi are distinct, Pn−1 may be identified with Rn by way of the vector space isomorphism
p 7→ (p(x1), . . . , p(xn)). Each linear, real-valued function on Pn−1 must, then, correspond
to a linear, real-valued function on Rn—and any such map is given by inner product against
some vector (A1, . . . , An). In particular, we must have I(p) =

∑n
i=1Ai p(xi).

In any case, we now have our quadrature formula: For f ∈ C[ a, b ] we define In(f) =∑n
i=1Ai f(xi), where Ai =

∫ b
a
`i(x)w(x) dx. But notice that the proof of Lemma 9.2 sug-

gests an alternate way to write the formula. Indeed, if Ln−1(f)(x) =
∑n
i=1 f(xi)`i(x) is the

Lagrange interpolating polynomial for f of degree n−1 based on the nodes x1, . . . , xn, then∫ b

a

(Ln−1(f))(x)w(x) dx =
n∑
i=1

f(xi)
∫ b

a

`i(x)w(x) dx =
n∑
i=1

Ai f(xi).

In summary, In(f) = I(Ln−1(f)) ≈ I(f); that is,

In(f) =
n∑
i=1

Ai f(xi) =
∫ b

a

(Ln−1(f))(x)w(x) dx ≈
∫ b

a

f(x)w(x) dx = I(f),

where Ln−1 is the Lagrange interpolating polynomial of degree n − 1 based on the nodes
x1, . . . , xn. This formula is obviously exact for f ∈ Pn−1.

It’s easy to give a bound on |In(f)| in terms of ‖f‖; indeed,

|In(f)| ≤
n∑
i=1

|Ai| |f(xi)| ≤ ‖f‖

(
n∑
i=1

|Ai|

)
.
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By considering a norm one continuous function f satisfying f(xi) = sgnAi for each i =
1, . . . , n, it’s easy to see that

∑n
i=1 |Ai| is the smallest constant that works in this inequality.

In other words, λn =
∑n
i=1 |Ai|, n = 1, 2, . . ., are the Lebesgue numbers for this process. As

with all previous settings, we want these numbers to be uniformly bounded.
If w(x) ≡ 1 and if f is n-times continuously differentiable, we have an error estimate for

our quadrature formula:∣∣∣∣∣
∫ b

a

f −
∫ b

a

Ln−1(f)

∣∣∣∣∣ ≤
∫ b

a

|f − Ln−1(f)| ≤ 1
n!
‖f (n)‖

∫ b

a

n∏
i=1

|x− xi| dx

(recall Theorem 5.6). As it happens, the integral on the right is minimized when the xi are
taken to be the zeros of the Chebyshev polynomial Un (see Rivlin [45, page 72]).

The fact that a quadrature formula is exact for polynomials of low degree does not by
itself guarantee that the formula is highly accurate. The problem is that

∑n
i=1Ai f(xi)

may be estimating a very small quantity through the cancellation of very large quantities.
So, for example, a positive function f may yield a negative value for this expression. This
wouldn’t happen if the Ai were all positive—and we’ve already seen how useful positivity
can be. Our goal here is to further improve our quadrature formula to have this property.
But we have yet to take advantage of the fact that the nodes xi are at our disposal. We’ll
let Gauss show us the way!

Theorem 9.3. (Gauss) Fix a weight w(x) on [ a, b ], and let (Qn) be the canonical se-
quence of orthogonal polynomials relative to w. Given n, let x1, . . . , xn be the zeros of Qn
(these all lie in (a, b)), and choose weights A1, . . . , An so that the formula

∑n
i=1Aif(xi) ≈∫ b

a
f(x)w(x) dx is exact for polynomials of degree less than n. Then, in fact, the formula is

exact for all polynomials of degree less than 2n.

Proof. Given a polynomial P of degree less than 2n, we may divide: P = QnR + S, where
R and S are polynomials of degree less than n. Then,∫ b

a

P (x)w(x) dx =
∫ b

a

Qn(x)R(x)w(x) dx +
∫ b

a

S(x)w(x) dx

=
∫ b

a

S(x)w(x) dx, because deg R < n

=
n∑
i=1

AiS(xi), because deg S < n.

But P (xi) = Qn(xi)R(xi) + S(xi) = S(xi), because Qn(xi) = 0. Hence,
∫ b
a
P (x)w(x) dx =∑n

i=1AiP (xi) for all polynomials P of degree less than 2n.

Amazing! But, well, not really: P2n−1 is of dimension 2n, and we had 2n numbers
x1, . . . , xn and A1, . . . , An to choose as we saw fit. Said another way, the division algorithm
tells us that P2n−1 = QnPn−1 ⊕ Pn−1. Because QnPn−1 ⊂ ker(In), the action of In on
P2n−1 is the same as its action on a “copy” of Pn−1 (where its known to be exact).

In still other words, because any polynomial that vanishes at all the xi must be divisible
by Qn (and conversely), we have QnPn−1 = P2n−1 ∩ (

⋂n
i=1 ker δi) = ker(In |P2n−1). Thus,

In “factors through” the quotient space P2n−1/QnPn−1 = Pn−1.
Also not surprising is that this particular choice of xi is unique.
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Lemma 9.4. Suppose that a ≤ x1 < · · · < xn ≤ b and A1, . . . , An are given so that the
equation

∫ b
a
P (x)w(x) dx =

∑n
i=1AiP (xi) is satisfied for all polynomials P of degree less

than 2n. Then x1, . . . , xn are the zeros of Qn.

Proof. Let Q(x) =
∏n
i=1(x − xi). Then, for k < n, the polynomial Q · Qk has degree

n+ k < 2n. Hence, ∫ b

a

Q(x)Qk(x)w(x) dx =
n∑
i=1

AiQ(xi)Qk(xi) = 0.

Because Q is a monic polynomial of degree n which is orthogonal to each Qk, k < n, we
must have Q = Qn. Thus, the xi are actually the zeros of Qn.

According to Rivlin, the phrase Gaussian quadrature is usually reserved for the specific
quadrature formula whereby

∫ 1

−1
f(x) dx is approximated by

∫ 1

−1
(Ln−1(f))(x) dx, where

Ln−1(f) is the Lagrange interpolating polynomial to f using the zeros of the n-th Legendre
polynomial as nodes. (What a mouthful!) What is actually being described in our version
of Gauss’s theorem is Gaussian-type quadrature.

Before computers, Gaussian quadrature was little more than a curiosity; the roots of
Qn are typically irrational, and certainly not easy to find by hand. By now, though, it’s
considered a standard quadrature technique. In any case, we still can’t judge the quality of
Gauss’s method without a bit more information.

Gaussian-type Quadrature

First, let’s summarize our rather cumbersome notation.

orthogonal approximate
polynomial zeros weights integral

Q1 x
(1)
1 A

(1)
1 I1

Q2 x
(2)
1 , x

(2)
2 A

(2)
1 , A

(2)
2 I2

Q3 x
(3)
1 , x

(3)
2 , x

(3)
3 A

(3)
1 , A

(3)
2 , A

(3)
3 I3

...
...

...
...

Hidden here is the Lagrange interpolation formula Ln−1(f) =
∑n
i=1 f(x(n)

i ) `(n−1)
i , where

`
(n−1)
i denote the Lagrange polynomials of degree n − 1 based on the nodes x(n)

1 , . . . , x
(n)
n .

The n-th quadrature formula is then

In(f) =
∫ b

a

Ln−1(f)(x)w(x) dx =
n∑
i=1

A
(n)
i f(x(n)

i ) ≈
∫ b

a

f(x)w(x) dx,

which is exact for polynomials of degree less than 2n.
By way of one example, Hermite showed that A(n)

k = π/n for the Chebyshev weight
w(x) = (1 − x2)−1/2 on [−1, 1 ]. Remarkably, A(n)

k doesn’t depend on k! The quadrature
formula in this case reads:∫ 1

−1

f(x) dx√
1− x2

≈ π

n

n∑
k=1

f

(
cos

2k − 1
2n

π

)
.
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Or, if you prefer, ∫ 1

−1

f(x) dx ≈ π

n

n∑
k=1

f

(
cos

2k − 1
2n

π

)
sin

2k − 1
2n

π.

(Why?) You can find full details in Natanson [41, Vol. III].
The key result, due to Stieltjes, is that In is positive:

Lemma 9.5. A(n)
1 , . . . , A

(n)
n > 0 and

∑n
i=1A

(n)
i =

∫ b
a
w(x) dx.

Proof. The second assertion is obvious (because In(1) = I(1) ). For the first, fix 1 ≤ j ≤ n

and notice that (`(n−1)
j )2 is of degree 2(n− 1) < 2n. Thus,

0 < 〈 `(n−1)
j , `

(n−1)
j 〉 =

∫ b

a

[
`
(n−1)
j (x)

]2
w(x) dx

=
n∑
i=1

A
(n)
i

[
`
(n−1)
j (x(n)

i )
]2

= A
(n)
j ,

because `(n−1)
j (x(n)

i ) = δi,j .

Now our last calculation is quite curious; what we’ve shown is that

A
(n)
j =

∫ b

a

`
(n−1)
j (x)w(x) dx =

∫ b

a

[
`
(n−1)
j (x)

]2
w(x) dx.

Essentially the same calculation as above also proves

Corollary 9.6. 〈 `(n−1)
i , `

(n−1)
j 〉 = 0 for i 6= j.

Because A(n)
1 , . . . , A

(n)
n > 0, it follows that In(f) is positive; that is, In(f) ≥ 0 whenever

f ≥ 0. The second assertion in Lemma 9.5 tells us that the In are uniformly bounded :

|In(f)| ≤ ‖f‖
n∑
i=1

A
(n)
i = ‖f‖

∫ b

a

w(x) dx,

and this is the same bound that holds for I(f) =
∫ b
a
f(x)w(x) dx itself. Given all of this,

proving that In(f) → I(f) is a piece of cake. The following result is again due to Stieltjes
(á la Lebesgue).

Theorem 9.7. In the above notation, |In(f)− I(f)| ≤ 2
(∫ b

a
w(x) dx

)
E2n−1(f). In partic-

ular, In(f)→ I(f) for evey f ∈ C[ a, b ].

Proof. Let p∗ be the best uniform approximation to f out of P2n−1. Then, because In(p∗) =
I(p∗), we have

|I(f)− In(f)| ≤ |I(f − p∗)| + |In(f − p∗)|

≤ ‖f − p∗‖
∫ b

a

w(x) dx + ‖f − p∗‖
n∑
i=1

A
(n)
i

= 2 ‖f − p∗‖
∫ b

a

w(x) dx = 2E2n−1(f)
∫ b

a

w(x) dx.
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Computational Considerations

You’ve probably been asking yourself: “How do I find the Ai without integrating?” Well,
let’s first recall the definition: In the case of Gaussian-type quadrature we have

A
(n)
i =

∫ b

a

`
(n−1)
i (x)w(x) dx =

∫ b

a

Qn(x)

(x− x(n)
i )Q′n(x(n)

i )
w(x) dx

(because “W” is the same as Qn here—the xi are the zeros of Qn). Next, consider the
function

ϕn(x) =
∫ b

a

Qn(t)−Qn(x)
t− x

w(t) dt.

Because t − x divides Qn(t) − Qn(x), note that ϕn is actually a polynomial (of degree at
most n− 1 ) and that

ϕn(x(n)
i ) =

∫ b

a

Qn(t)

t− x(n)
i

w(t) dt = A
(n)
i Q′n(x(n)

i ).

Now Q′n(x(n)
i ) is readily available; we just need to compute ϕn(x(n)

i ).

Lemma 9.8. The ϕn satisfy the same recurrence formula as the Qn; namely,

ϕn+1(x) = (x− an)ϕn(x)− bnϕn−1(x), n ≥ 1,

but with different starting values

ϕ0(x) ≡ 0, and ϕ1(x) ≡
∫ b

a

w(x) dx.

Proof. The formulas for ϕ0 and ϕ1 are obviously correct, because Q0(x) ≡ 1 and Q1(x) =
x− a0. We only need to check the recurrence formula itself.

ϕn+1(x) =
∫ b

a

Qn+1(t)−Qn+1(x)
t− x

w(t) dt

=
∫ b

a

(t− an)Qn(t)− bnQn−1(t)− (x− an)Qn(x) + bnQn−1(x)
t− x

w(t) dt

= (x− an)
∫ b

a

Qn(t)−Qn(x)
t− x

w(t) dt − bn

∫ b

a

Qn−1(t)−Qn−1(x)
t− x

w(t) dt

= (x− an)ϕn(x)− bn ϕn−1(x),

because
∫ b
a
Qn(t)w(t) dt = 0.

Of course, the derivatives Q′n satisfy a recurrence relation of sorts, too:

Q′n+1(x) = Qn(x) + (x− an)Q′n(x)− bnQ′n−1(x).

But Q′n(x(n)
i ) can be computed without knowing Q′n(x). Indeed, Qn(x) =

∏n
i=1(x − x(n)

i ),
so we have Q′n(x(n)

i ) =
∏
j 6=i(x

(n)
i − x(n)

j ).

The weights A(n)
i , or Christoffel numbers, together with the zeros of Qn are tabulated in

a variety of standard cases. See, for example, Abramowitz and Stegun [1] (this wonderful
resource is now available online through the U.S. Department of Commerce). In practice,
of course, it’s enough to tabulate data for the case [ a, b ] = [−1, 1 ].
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Applications to Interpolation

Although Ln(f) isn’t typically a good uniform approximation to f , if we interpolate at the
zeros of an orthogonal polynomial Qn+1, then Ln(f) will be a good approximation in the
‖ · ‖1 or ‖ · ‖2 norm generated by the corresponding weight w. Specifically, by rewording
our earlier results, it’s easy to get estimates for each of the errors

∫ b
a
|f − Ln(f)|w and∫ b

a
|f − Ln(f)|2 w. We use essentially the same notation as before, except now we take

Ln(f) =
n+1∑
i=1

f
(
x

(n+1)
i

)
`
(n)
i ,

where x
(n+1)
1 , . . . , x

(n+1)
n+1 are the roots of Qn+1 and `

(n)
i is of degree n. This leads to a

quadrature formula that’s exact on polynomials of degree less than 2(n+ 1).
As we’ve already seen, `(n)

1 , . . . , `
(n)
n+1 are orthogonal and so ‖Ln(f)‖2 may be computed

exactly.

Lemma 9.9. ‖Ln(f)‖2 ≤ ‖f‖
(∫ b

a
w(x) dx

)1/2

.

Proof. Because Ln(f)2 is a polynomial of degree ≤ 2n < 2(n+ 1), we have

‖Ln(f)‖22 =
∫ b

a

[Ln(f)]2 w(x) dx

=
n+1∑
j=1

A
(n+1)
j

[
n+1∑
i=1

f
(
x

(n+1)
i

)
`
(n)
i

(
x

(n+1)
j

)]2

=
n+1∑
j=1

A
(n+1)
j

[
f
(
x

(n+1)
j

)]2
≤ ‖f‖2

n+1∑
j=1

A
(n+1)
j = ‖f‖2

∫ b

a

w(x) dx.

Please note that we also have ‖f‖2 ≤ ‖f‖
(∫ b

a
w(x) dx

)1/2

; that is, this same estimate
holds for ‖f‖2 itself.

As usual, once we have an estimate for the norm of an operator, we also have an analogue
of Lebesgue’s theorem.

Theorem 9.10. ‖f − Ln(f)‖2 ≤ 2
(∫ b

a
w(x) dx

)1/2

En(f).

Proof. Here we go again! Let p∗ be the best uniform approximation to f out of Pn and use
the fact that Ln(p∗) = p∗.

‖f − Ln(f)‖2 ≤ ‖f − p∗‖2 + ‖Ln(f − p∗)‖2

≤ ‖f − p∗‖

(∫ b

a

w(x) dx

)1/2

+ ‖f − p∗‖

(∫ b

a

w(x) dx

)1/2

= 2En(f)

(∫ b

a

w(x) dx

)1/2

.



96 CHAPTER 9. GAUSSIAN QUADRATURE

Hence, if we interpolate f ∈ C[ a, b ] at the zeros of (Qn), then Ln(f)→ f in ‖ · ‖2 norm.
The analogous result for the ‖ · ‖1 norm is now easy:

Corollary 9.11.
∫ b
a
|f(x)− Ln(f)(x)|w(x) dx ≤ 2

(∫ b
a
w(x) dx

)
En(f).

Proof. We apply the Cauchy-Schwarz inequality:∫ b

a

|f(x)− Ln(f)(x)|w(x) dx =
∫ b

a

|f(x)− Ln(f)(x)|
√
w(x)

√
w(x) dx

≤

(∫ b

a

|f(x)− Ln(f)(x)|2 w(x) dx

)1/2(∫ b

a

w(x) dx

)1/2

≤ 2En(f)
∫ b

a

w(x) dx.

Essentially the same device allows an estimate of
∫ b
a
f(x) dx in terms of

∫ b
a
f(x)w(x) dx

(which may be easier to compute). As this is an easy calculation, we’ll combine both
statement and proof:

Corollary 9.12. If
∫ b
a
w(x)−1 dx is finite, then∫ b

a

|f(x)− Ln(f)(x)| dx =
∫ b

a

|f(x)− Ln(f)(x)|
√
w(x)

1√
w(x)

dx

≤

(∫ b

a

|f(x)− Ln(f)(x)|2 w(x) dx

)1/2(∫ b

a

1
w(x)

dx

)1/2

≤ 2En(f)

(∫ b

a

w(x) dx

)1/2(∫ b

a

1
w(x)

dx

)1/2

.

In particular, the Chebyshev weight satisfies∫ 1

−1

dx√
1− x2

= π and
∫ 1

−1

√
1− x2 dx =

π

2
.

Thus, interpolation at the zeros of the Chebyshev polynomials (of the first kind) would
provide good, simultaneous approximation in each of the norms ‖ · ‖1, ‖ · ‖2, and ‖ · ‖.

The Moment Problem

Given a positive, continuous weight function w(x) on [ a, b ], the number

µk =
∫ b

a

xk w(x) dx

is called the k-th moment of w. In physical terms, if we think of w(x) as the density of a
thin rod placed on the interval [ a, b ], then µ0 is the mass of the rod, µ1/µ0 is its center of
mass, µ2 is its moment of inertia (about 0), and so on. In probabilistic terms, if µ0 = 1,
then w is the probability density function for some random variable, µ1 is the expected
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value, or mean, of this random variable, and µ2 − µ2
1 is its variance. The moment problem

(or problems, really) concern the inverse procedure. What can be measured in real life are
the moments—can the moments be used to find the density function?

Questions: Do the moments determine w? Do different weights have different
moment sequences? If we knew the sequence (µk), could we recover w? How do
we tell if a given sequence (µk) is the moment sequence for some positive weight?
Do “special” weights give rise to “special” sequences?

Now we’ve already answered one of these questions: The Weierstrass theorem tells us
that different weights have different moment sequences. Said another way, if∫ b

a

xk w(x) dx = 0 for all k = 0, 1, 2, . . . ,

then w ≡ 0. Indeed, by linearity, this says that
∫ b
a
p(x)w(x) dx = 0 for all polynomials p

which, in turn, tells us that
∫ b
a
w(x)2 dx = 0. (Why?) The remaining questions are harder

to answer. We’ll settle for simply stating a few pertinent results.
Given a sequence of numbers (µk), we define the n-th difference sequence (∆nµk) by

∆0µk = µk

∆1µk = µk − µk+1

∆nµk = ∆n−1µk −∆n−1µk+1, n ≥ 1.

For example, ∆2µk = µk − 2µk+1 + µk+2. More generally, induction will show that

∆nµk =
n∑
i=0

(−1)i
(
n

i

)
µk+i.

In the case of a weight w on the interval [ 0, 1 ], this sum is easy to recognize as an integral.
Indeed,∫ 1

0

xk(1− x)n w(x) dx =
n∑
i=0

(−1)i
(
n

i

)∫ 1

0

xk+i w(x) dx =
n∑
i=0

(−1)i
(
n

i

)
µk+i.

In particular, if w is nonnegative, then we must have ∆nµk ≥ 0 for every n and k. This
observation serves as motivation for

Theorem 9.13. The following are equivalent:

(a) (µk) is the moment sequence of some nonnegative weight function w on [ 0, 1 ].

(b) ∆nµk ≥ 0 for every n and k.

(c) a0µ0 + a1µ1 + · · ·+ anµn ≥ 0 whenever a0 + a1x+ · · ·+ anx
n ≥ 0 for all 0 ≤ x ≤ 1.

The equivalence of (a) and (b) is due to Hausdorff. A real sequence satisfying (b) or (c)
is sometimes said to be positive definite.

Now dozens of mathematicians worked on various aspects of the moment problem:
Chebyshev, Markov, Stieltjes, Cauchy, Riesz, Fréchet, and on and on. And several of
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them, in particular Cauchy and Stieltjes, noticed the importance of the integral
∫ b
a
w(t)
x−t dt

in attacking the problem (compare this to Cauchy’s well-known integral formula from com-
plex analysis). It was Stieltjes, however, who gave the first complete solution to such a
problem—developing his own integral (by considering

∫ b
a
dW (t)
x−t ), his own variety of contin-

ued fractions, and planting the seeds for the study of orthogonal polynomials while he was
at it! We will attempt to at least sketch a few of these connections.

To begin, let’s fix our notation: To simplifiy things, we suppose that we’re given a
nonnegative weight w(x) on a symmetric interval [−a, a ], and that all of the moments of
w are finite. We will otherwise stick to our usual notations for (Qn), the Gaussian-type
quadrature formulas, and so on. Next, we consider the moment-generating function:

Lemma 9.14. If x /∈ [−a, a ], then
∫ a

−a

w(t)
x− t

dt =
∞∑
k=0

µk
xk+1

.

Proof.
1

x− t
=

1
x
· 1

1− (t/x)
=
∞∑
k=0

tk

xk+1
, and the sum converges uniformly because |t/x| ≤

a/|x| < 1. Now just multiply by w(t) and integrate.

By way of an example, consider the Chebyshev weight w(x) = (1 − x2)−1/2 on [−1, 1 ].
For x > 1 we have∫ 1

−1

dt

(x− t)
√

1− t2
=

π√
x2 − 1

(
set t = 2u/(1 + u2)

)
=

π

x

(
1− 1

x2

)−1/2

=
π

x

[
1 +

1
2
· 1
x2

+
1 · 3
2 · 2

· 1
2!
· 1
x4

+ · · ·
]
,

using the binomial formula. Thus, we’ve found all the moments:

µ0 =
∫ 1

−1

dt√
1− t2

= π

µ2n−1 =
∫ 1

−1

t2n−1dt√
1− t2

= 0

µ2n =
∫ 1

−1

t2ndt√
1− t2

=
1 · 3 · 5 · · · (2n− 1)

2nn!
π.

Stieltjes proved much more: The integral
∫ a
−a

w(t)
x−t dt is actually an analytic function of x

in C \ [−a, a ]. In any case, because x /∈ [−a, a ], we know that 1
x−t is continuous on [−a, a ].

In particular, we can apply our quadrature formulas and Stieltjes’ theorem (Theorem 9.7)
to write ∫ a

−a

w(t)
x− t

dt = lim
n→∞

n∑
i=1

A
(n)
i

x− x(n)
i

,

and these sums are recognizable:

Lemma 9.15.
n∑
i=1

A
(n)
i

x− x(n)
i

=
ϕn(x)
Qn(x)

.
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Proof. Because ϕn has degree < n and ϕn(x(n)
i ) 6= 0 for any i, we may appeal to the method

of partial-fractions to write

ϕn(x)
Qn(x)

=
ϕn(x)

(x− x(n)
1 ) · · · (x− x(n)

n )
=

n∑
i=1

ci

x− x(n)
i

where ci is given by

ci =
ϕn(x)
Qn(x)

(x− x(n)
i )
]
x=x

(n)
i

=
ϕn(x(n)

i )

Q′n(x(n)
i )

= A
(n)
i .

Now here’s where the continued fractions come in: Stieltjes recognized the fact that

ϕn+1(x)
Qn+1(x)

=
b0

(x− a0)− b1
(x− a1)− . . .

− bn
(x− an)

(which can be proved by induction), where b0 =
∫ b
a
w(t) dt. More generally, induction will

show that the n-th convergent of a continued fraction can be written as

An
Bn

=
p1

q1 − p2

q2 − . . .
− pn
qn

by means of the recurrence formulas

A0 = 0
A1 = p1

An = qnAn−1 + pnAn−2

B0 = 1
B1 = q1
Bn = qnBn−1 + pnBn−2

where n = 2, 3, 4, . . .. Please note that An and Bn satisfy the same recurrence formula, but
with different starting values (as is the case with ϕn and Qn).

Again using the Chebyshev weight as an example, for x > 1 we have

π√
x2 − 1

=
∫ 1

−1

dt

(x− t)
√

1− t2
=

π

x− 1/2

x− 1/4

x− 1/4

. . .

because an = 0 for all n, b1 = 1/2, and bn = 1/4 for n ≥ 2. In other words, we’ve just found
a continued fraction expansion for (x2 − 1)−1/2.
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Chapter 10

The Müntz Theorems

For several weeks now we’ve taken advantage of the fact that the monomials 1, x, x2, . . .
have dense linear span in C[ 0, 1 ]. What, if anything, is so special about these particular
powers? How about if we consider polynomials of the form

∑n
k=0 akx

k2
; are they dense,

too? More generally, what can be said about the span of a sequence of monomials (xλn),
where λ0 < λ1 < λ2 < · · ·? Of course, we’ll have to assume that λ0 ≥ 0, but it’s not hard
to see that we will actually need λ0 = 0, for otherwise each of the polynomials

∑n
k=0 akx

λk

vanishes at x = 0 (and so has distance at least 1 from the constant 1 function, for example).
If the λn are integers, it’s also clear that we’ll have to have λn →∞ as n→∞. But what
else is needed? The answer comes to us from Müntz in 1914. (You sometimes see the name
Otto Szász associated with Müntz’s theorem, because Szász proved a similar theorem at
nearly the same time (1916).)

Theorem 10.1. Let 0 ≤ λ0 < λ1 < λ2 < · · ·. Then the functions (xλn) have dense linear
span in C[ 0, 1 ] if and only if λ0 = 0 and

∑∞
n=1 λ

−1
n =∞.

What Müntz is trying to tell us here is that the λn can’t get big too quickly. In particular,
the polynomials of the form

∑n
k=0 akx

k2
are evidently not dense in C[ 0, 1 ]. On the other

hand, the λn don’t have to be unbounded; indeed, Müntz’s theorem implies an earlier result
of Bernstein from 1912: If 0 < α1 < α2 < · · · < K (some constant), then 1, xα1 , xα2 , . . .
have dense linear span in C[ 0, 1 ].

Before we give the proof of Müntz’s theorem, let’s invent a bit of notation: We write

Xn =

{
n∑
k=0

akx
λk : a0, . . . , an ∈ R

}
= span{xλk : k = 0, . . . , n }

and, given f ∈ C[ 0, 1 ], we write dist(f,Xn) to denote the distance from f to Xn. Let’s also
write X =

⋃∞
n=0Xn. That is, X is the linear span of the entire sequence (xλn)∞n=0. The

question here is whether X is dense, and we’ll address the problem by determining whether
dist(f,Xn)→ 0, as n→∞, for every f ∈ C[ 0, 1 ].

If we can show that each (fixed) power xm can be uniformly approximated by a linear
combination of xλn , then the Weierstrass theorem will imply that X is dense in C[ 0, 1 ].
(How?) Surprisingly, the numbers dist(xm, Xn) can be estimated. Our proof won’t give the
best estimate, but it will show how the condition

∑∞
n=1 λ

−1
n =∞ comes into the picture.

101
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Lemma 10.2. Let m > 0. Then, dist(xm, Xn) ≤
n∏
k=1

∣∣∣∣ 1− m

λk

∣∣∣∣.
Proof. We may certainly assume that m 6= λn for any n. Given this, we inductively define
a sequence of functions by setting P0(x) = xm and

Pn(x) = (λn −m)xλn
∫ 1

x

t−1−λn Pn−1(t) dt

for n ≥ 1. For example,

P1(x) = (λ1 −m)xλ1

∫ 1

x

t−1−λ1 tm dt = −xλ1 tm−λ1
]1
x

= xm − xλ1 .

By induction, each Pn is of the form xm −
∑n
k=0 akx

λk for some scalars (ak):

Pn(x) = (λn −m)xλn
∫ 1

x

t−1−λn Pn−1(t) dt

= (λn −m)xλn
∫ 1

x

t−1−λn

[
tm −

n−1∑
k=0

akt
λk

]
dt

= xm − xλn + (λn −m)
n−1∑
k=0

ak
λn − λk

(xλk − xλn).

Finally, ‖P0‖ = 1 and ‖Pn‖ ≤
∣∣1− m

λn

∣∣ ‖Pn−1‖, because

|λn −m|xλn
∫ 1

x

t−1−λn dt =
|λn −m|

λn
(1− xλn) ≤

∣∣∣∣ 1− m

λn

∣∣∣∣ .
Thus,

dist(xm, Xn) ≤ ‖Pn‖ ≤
n∏
k=1

∣∣∣∣ 1− m

λk

∣∣∣∣ .
The preceding result is due to v. Golitschek. A slightly better estimate, also due to

v. Golitschek (1970), is dist(xm, Xn) ≤
∏n
k=1

|m−λk|
m+λk

.
Now a well-known fact about infinite products is that for positive ak, the product∏∞

k=1

∣∣1 − ak∣∣ diverges (to 0) if and only if the series
∑∞
k=1 ak diverges (to ∞) if and only

if the product
∏∞
k=1

∣∣1 + ak
∣∣ diverges (to ∞). In particular,

∏n
k=1

∣∣1 − m
λk

∣∣ → 0 if and only
if
∑n
k=1

1
λk
→∞. That is, dist(xm, Xn)→ 0 if and only if

∑∞
k=1

1
λk

=∞. This proves the
“backward” direction of Müntz’s theorem.

We’ll prove the “forward” direction of Müntz’s theorem by proving a version of Müntz’s
theorem for the space L2[ 0, 1 ]. For our purposes, L2[ 0, 1 ] denotes the space C[ 0, 1 ] endowed
with the norm

‖f‖2 =
(∫ 1

0

|f(x)|2dx
)1/2

,

although our results are equally valid in the “official” space L2[ 0, 1 ] (consisting of square-
integrable, Lebegue measurable functions). In the latter case, we no longer need to assume
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that λ0 = 0, but we do need to assume that each λn > −1/2 (in order that x2λn be integrable
on [ 0, 1 ]).

Remarkably, the distance from f to Xn can be computed exactly in the L2 norm. For
this we’ll need a bit more notation: Given linearly independent vectors f1, . . . , fn in an inner
product space, we call

G(f1, . . . , fn) =

∣∣∣∣∣∣∣
〈 f1, f1 〉 · · · 〈 f1, fn 〉

...
. . .

...
〈 fn, f1 〉 · · · 〈 fn, fn 〉

∣∣∣∣∣∣∣ = det
[
〈 fi, fj 〉

]
i,j

the Gram determinant of the fk.

Lemma 10.3. (Gram) Let F be a finite dimensional subspace of an inner product space
V , and let g ∈ V \ F . Then the distance d from g to F satisfies

d 2 =
G(g, f1, . . . , fn)
G(f1, . . . , fn)

,

where f1, . . . , fn is any basis for F .

Proof. Let f =
∑n
i=1 aifi be the best approximation to g out of F . Then, because g − f is

orthogonal to F , we have, in particular, 〈 fj , f 〉 = 〈 fj , g 〉 for all j; that is,

n∑
i=1

ai〈 fj , fi 〉 = 〈 fj , g 〉, j = 1, . . . , n. (10.1)

Because this system of equations always has a unique solution a1, . . . , an, we must have
G(f1, . . . , fn) 6= 0 (and so the formula in the statement of the Lemma at least makes sense).

Next, notice that

d 2 = 〈 g − f, g − f 〉 = 〈 g − f, g 〉 = 〈 g, g 〉 − 〈 g, f 〉;

in other words,

d 2 +
n∑
i=1

ai〈 g, fi 〉 = 〈 g, g 〉. (10.2)

Now consider (10.1) and (10.2) as a system of n + 1 equations in the n + 1 unknowns
a1, . . . , an, and d 2; in matrix form we have

1 〈 g, f1 〉 · · · 〈 g, fn 〉
0 〈 f1, f1 〉 · · · 〈 f1, fn 〉
...

...
. . .

...
0 〈 fn, f1 〉 · · · 〈 fn, fn 〉



d 2

a1
...
an

 =


〈 g, g 〉
〈 f1, g 〉

...
〈 fn, g 〉

 .
Solving for d 2 using Cramer’s rule gives the desired result; expanding along the first
column shows that the matrix of coefficients has determinant G(f1, . . . , fn), while the
matrix obtained by replacing the “d column” by the right-hand side has determinant
G(g, f1, . . . , fn).
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Note: By Lemma 10.3 and induction, every Gram determinant is positive!

In what follows, we will continue to use Xn to denote the span of xλ0 , . . . , xλn , but we
now write dist 2(f,Xn) to denote the distance from f to Xn in the L2 norm.

Theorem 10.4. Let m, λk > −1/2 for k = 0, 1, 2, . . .. Then

dist 2(xm, Xn) =
1√

2m+ 1

n∏
k=0

|m− λk|
m+ λk + 1

.

Proof. The proof is based on a determinant formula due to Cauchy:

∏
i,j

(ai + bj)

∣∣∣∣∣∣∣∣
1

a1+b1
· · · 1

a1+bn
...

. . .
...

1
an+b1

· · · 1
an+bn

∣∣∣∣∣∣∣∣ =
∏
i>j

(ai − aj)(bi − bj).

If we consider each of the ai and bj as variables, then each side of the equation is a polynomial
in a1, . . . , an, b1, . . . , bn. (Why?) Now the right-hand side clearly vanishes if ai = aj or
bi = bj for some i 6= j, but the left-hand side also vanishes in any of these cases. Thus, the
right-hand side divides the left-hand side. But both polynomials have degree n− 1 in each
of the ai and bj . (Why?) Thus, the left-hand side is a constant multiple of the right-hand
side. To show that the constant must be 1, write the left-hand side as

∏
i 6=j

(ai + bj)

∣∣∣∣∣∣∣∣∣∣∣

1 a1+b1
a1+b2

· · · a1+b1
a1+bn

a2+b2
a2+b1

1 · · · a2+b2
a2+bn

...
. . .

...
an+bn
an+b1

· · · an+bn
an+bn−1

1

∣∣∣∣∣∣∣∣∣∣∣
and now take the limit as b1 → −a1, b2 → −a2, etc. The expression above tends to∏
i 6=j(ai − aj), as does the right-hand side of Cauchy’s formula.

Now, 〈xp, xq 〉 =
∫ 1

0
xp+q dx = 1

p+q+1 for p, q > −1/2, so

G(xλ0 , . . . , xλn) = det

([
1

λi + λj + 1

]
i,j

)
=

∏
i>j(λi − λj)2∏
i,j(λi + λj + 1)

,

with a similar formula holding for G(xm, xλ0 , . . . , xλn). Substituting these expressions into
our distance formula and taking square roots finishes the proof.

Now we can determine exactly when X is dense in L2[ 0, 1 ]. For easier comparison to
the C[ 0, 1 ] case, we will suppose that the λn are nonnegative.

Theorem 10.5. Let 0 ≤ λ0 < λ1 < λ2 < · · ·. Then the functions (xλn) have dense linear
span in L2[ 0, 1 ] if and only if

∑∞
n=1 λ

−1
n =∞.

Proof. If
∑∞
n=1

1
λn

< ∞, then each of the products
∏n
k=1

∣∣1 − m
λk

∣∣ and
∏n
k=1

∣∣1 + (m+1)
λk

∣∣
converges to some nonzero limit for any m not equal to any λk. Thus, dist 2(xm, Xn) 6→ 0,
as n → ∞, for any m 6= λk, k = 0, 1, 2, . . .. In particular, the functions (xλn) cannot have
dense linear span in L2[ 0, 1 ].
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Conversely, if
∑∞
n=1

1
λn

= ∞, then
∏n
k=1

∣∣1 − m
λk

∣∣ diverges to 0 while
∏n
k=1

∣∣1 + (m+1)
λk

∣∣
diverges to +∞. Thus, dist 2(xm, Xn) → 0, as n → ∞, for every m > −1/2. Because the
polynomials are dense in L2[ 0, 1 ], this finishes the proof.

Finally, we can finish the proof of Müntz’s theorem in the case of C[ 0, 1 ]. Suppose that
the functions (xλn) have dense linear span in C[ 0, 1 ]. Then, because ‖f‖2 ≤ ‖f‖, it follows
that the functions (xλn) must also have dense linear span in L2[ 0, 1 ]. (Why?) Hence,∑∞
n=1

1
λn

=∞.

Just for good measure, here’s a second proof of the “backward” direction for C[ 0, 1 ]
based on the L2[ 0, 1 ] version. Suppose that

∑∞
n=1

1
λn

=∞, and let m ≥ 1. Then,∣∣∣∣∣xm −
n∑
k=0

akx
λk

∣∣∣∣∣ =

∣∣∣∣∣ 1
m

∫ x

0

tm−1 dt−
n∑
k=0

ak
λk

∫ x

0

tλk−1 dt

∣∣∣∣∣
≤

∫ 1

0

∣∣∣∣∣ 1
m
tm−1 −

n∑
k=0

ak
λk

tλk−1

∣∣∣∣∣ dt
≤

∫ 1

0

∣∣∣∣∣ 1
m
tm−1 −

n∑
k=0

ak
λk

tλk−1

∣∣∣∣∣
2

dt

1/2

.

Now because
∑
λn>1

1
λn−1 = ∞ the functions (xλk−1) have dense linear span in L2[ 0, 1 ].

Thus, we can find ak so that the right-hand side of this inequality is less than some ε.
Because this estimate is independent of x, we’ve shown that

max
0≤x≤1

∣∣∣∣∣xm −
n∑
k=0

akx
λk

∣∣∣∣∣ < ε.

Corollary 10.6. Let 0 = λ0 < λ1 < λ2 < · · · with
∑∞
n=1 λ

−1
n = ∞, and let f be a

continuous function on [ 0,∞) for which c = lim
t→∞

f(t) exists. Then, f can be uniformly

approximated by finite linear combinations of the exponentials (e−λnt)∞n=0.

Proof. The function defined by g(x) = f(− log x), for 0 < x ≤ 1, and g(0) = c, is continuous
on [ 0, 1 ]. Obviously, g(e−t) = f(t) for each 0 ≤ t < ∞. Thus, given ε > 0, we can find n
and a0, . . . , an such that

max
0≤x≤1

∣∣∣∣∣ g(x)−
n∑
k=0

akx
λk

∣∣∣∣∣ = max
0≤t<∞

∣∣∣∣∣ f(t)−
n∑
k=0

ake
−λkt

∣∣∣∣∣ < ε.
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Chapter 11

The Stone-Weierstrass Theorem

To begin, an algebra is a vector space A on which there is a multiplication (f, g) 7→ fg (from
A×A into A) satisfying

(i) (fg)h = f(gh), for all f , g, h ∈ A;

(ii) f(g + h) = fg + fh and (f + g)h = fg + gh, for all f , g, h ∈ A;

(iii) α(fg) = (αf)g = f(αg), for all scalars α and all f , g ∈ A.

In other words, an algebra is a ring under vector addition and multiplication, together with
a compatible scalar multiplication. The algebra is commutative if

(iv) fg = gf , for all f , g ∈ A.

And we say that A has an identity element if there is a vector e ∈ A such that

(v) fe = ef = f , for all f ∈ A.

In case A is a normed vector space, we also require that the norm satisfy

(vi) ‖fg‖ ≤ ‖f‖ ‖g‖

(this simplifies things a bit), and in this case we refer to A as a normed algebra. If a normed
algebra is complete, we refer to it as a Banach algebra. Finally, a subset B of an algebra A
is called a subalgebra of A if B is itself an algebra (under the operations it inherits from A);
that is, if B is a (vector) subspace of A which is closed under multiplication.

If A is a normed algebra, then all of the various operations on A (or A×A) are continuous.
For example, because

‖fg − hk‖ = ‖fg − fk + fk − hk‖ ≤ ‖f‖ ‖g − k‖+ ‖k‖ ‖f − h‖

it follows that multiplication is continuous. (How?) In particular, if B is a subspace (or
subalgebra) of A, then B, the closure of B, is also a subspace (or subalgebra) of A.

Examples 11.1.

1. If we define multiplication of vectors “coordinatewise,” then Rn is a commutative
Banach algebra with identity (the vector (1, . . . , 1)) when equipped with the norm
‖x‖∞ = max

1≤i≤n
|xi|.
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2. It’s not hard to identify the subalgebras of Rn among its subspaces. For example, the
subalgebras of R2 are {(x, 0) : x ∈ R}, {(0, y) : y ∈ R}, and {(x, x) : x ∈ R}, along
with {(0, 0)} and R2.

3. Given a set X, we write B(X) for the space of all bounded, real-valued functions on
X. If we endow B(X) with the sup norm, and if we define arithmetic with functions
pointwise, then B(X) is a commutative Banach algebra with identity (the constant
1 function). The constant functions in B(X) form a subalgebra isomorphic (in every
sense of the word) to R.

4. If X is a metric (or topological) space, then we may consider C(X), the space of all
continuous, real-valued functions on X. If we again define arithmetic with functions
pointwise, then C(X) is a commutative algebra with identity (the constant 1 function).
The bounded, continuous functions on X, written Cb(X) = C(X) ∩ B(X), form a
closed subalgebra of B(X). If X is compact, then Cb(X) = C(X). In other words,
if X is compact, then C(X) is itself a closed subalgebra of B(X) and, in particular,
C(X) is a Banach algebra with identity.

5. The polynomials form a dense subalgebra of C[ a, b ]. The trig polynomials form a
dense subalgebra of C2π. These two sentences summarize Weierstrass’s two classical
theorems in modern parlance and form the basis for Stone’s version of the theorem.

Using this new language, we may restate the classical Weierstrass theorem to read: If
a subalgebra A of C[ a, b ] contains the functions e(x) = 1 and f(x) = x, then A is dense
in C[ a, b ]. Of course, any subalgebra of C[ a, b ] containing 1 and x actually contains all
the polynomials; thus, our restatement of Weierstrass’s theorem amounts to the observation
that any subalgebra containing a dense set is itself dense in C[ a, b ].

Our goal in this section is to prove an analogue of this new version of the Weierstrass
theorem for subalgebras of C(X), where X is a compact metric space. In particular, we will
want to extract the essence of the functions 1 and x from this statement. That is, we seek
conditions on a subalgebra A of C(X) that will force A to be dense in C(X). The key role
played by 1 and x, in the case of C[ a, b ], is that a subalgebra containing these two functions
must actually contain a much larger set of functions. But because we can’t be assured of
anything remotely like polynomials living in the more general C(X) spaces, we might want
to change our point of view. What we really need is some requirement on a subalgebra A
of C(X) that will allow us to construct a wide variety of functions in A. And, if A contains
a sufficiently rich variety of functions, it might just be possible to show that A is dense.

Because the two replacement conditions we have in mind make sense in any collection
of real-valued functions, we state them in some generality.

Let A be a collection of real-valued functions on some set X. We say that A separates
points in X if, given x 6= y ∈ X, there is some f ∈ A such that f(x) 6= f(y). We say that
A vanishes at no point of X if, given x ∈ X, there is some f ∈ A such that f(x) 6= 0.

Examples 11.2.

1. The single function f(x) = x clearly separates points in [ a, b ], and the function e(x) =
1 obviously vanishes at no point in [ a, b ]. Any subalgebra A of C[ a, b ] containing these
two functions will likewise separate points and vanish at no point in [ a, b ].

2. The set E of even functions in C[−1, 1 ] fails to separate points in [−1, 1 ]; indeed,
f(x) = f(−x) for any even function. However, because the constant functions are
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even, E vanishes at no point of [−1, 1 ]. It’s not hard to see that E is a proper
closed subalgebra of C[−1, 1 ]. The set of odd functions will separate points (because
f(x) = x is odd), but the odd functions all vanish at 0. The set of odd functions is a
proper closed subspace of C[−1, 1 ], although not a subalgebra.

3. The set of all functions f ∈ C[−1, 1 ] for which f(0) = 0 is a proper closed subalgebra
of C[−1, 1 ]. In fact, this set is a maximal (in the sense of containment) proper closed
subalgebra of C[−1, 1 ]. Note, however, that this set of functions does separate points
in [−1, 1 ] (again, because it contains f(x) = x).

4. It’s easy to construct examples of non-trivial closed subalgebras of C(X). Indeed,
given any closed subset X0 of X, the set A(X0) = {f ∈ C(X) : f vanishes on X0} is
a non-empty, proper subalgebra of C(X). It’s closed in any reasonable topology on
C(X) because it’s closed under pointwise limits. Subalgebras of the type A(X0) are
of interest because they’re actually ideals in the ring C(X). That is, if f ∈ C(X), and
if g ∈ A(X0), then fg ∈ A(X0).

As these few examples illustrate, neither of our new conditions, taken separately, is
enough to force a subalgebra of C(X) to be dense. But both conditions together turn out to
be sufficient. In order to better appreciate the utility of these new conditions, let’s isolate
the key computational tool that they permit within an algebra of functions.

Lemma 11.3. Let A be an algebra of real-valued functions on some set X, and suppose
that A separates points in X and vanishes at no point of X. Then, given x 6= y ∈ X and a,
b ∈ R, we can find an f ∈ A with f(x) = a and f(y) = b.

Proof. Given any pair of distinct points x 6= y ∈ X, the set Ã = {
(
f(x), f(y)

)
: f ∈ A}

is a subalgebra of R2. If A separates points in X, then Ã is evidently neither {(0, 0)} nor
{(x, x) : x ∈ R}. If A vanishes at no point, then {(x, 0) : x ∈ R} and {(0, y) : y ∈ R} are
both excluded. Thus Ã = R2. That is, for any a, b ∈ R, there is some f ∈ A for which
(f(x), f(y)) = (a, b).

Now we can state Stone’s version of the Weierstrass theorem (for compact metric spaces).
It should be pointed out that the theorem, as stated, also holds in C(X) when X is a
compact Hausdorff topological space (with the same proof), but does not hold for algebras
of complex-valued functions over C. More on this later.

Theorem 11.4. (Stone-Weierstrass Theorem, real scalars) Let X be a compact metric
space, and let A be a subalgebra of C(X). If A separates points in X and vanishes at no
point of X, then A is dense in C(X).

What Cheney calls an “embryonic” version of this theorem appeared in 1937, as a small
part of a massive 106 page paper! Later versions, appearing in 1948 and 1962, benefitted
from the work of the great Japanese mathematician Kakutani and were somewhat more
palatable to the general mathematical public. But, no matter which version you consult,
you’ll find them difficult to read. For more details, I would recommend you first consult
Rudin [46], Folland [17], Simmons [51], or my book on real analysis [10].

As a first step in attacking the proof of Stone’s theorem, notice that if A satisfies the
conditions of the theorem, then so does its closure A. (Why?) Thus, we may assume that
A is actually a closed subalgebra of C(X) and prove, instead, that A = C(X). Now the
closed subalgebras of C(X) inherit more structure than you might first imagine.
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Theorem 11.5. If A is a subalgebra of C(X), and if f ∈ A, then |f | ∈ A. Consequently,
A is a sublattice of C(X).

Proof. Let ε > 0, and consider the function |t| on the interval
[
−‖f‖, ‖f‖

]
. By the Weier-

strass theorem, there is a polynomial p(t) =
∑n
k=0 akt

k such that
∣∣ |t| − p(t) ∣∣ < ε for all

|t| ≤ ‖f‖. In particular, notice that |p(0)| = |a0| < ε.
Now, because |f(x)| ≤ ‖f‖ for all x ∈ X, it follows that

∣∣ |f(x)| − p(f(x))
∣∣ < ε for all

x ∈ X. But p(f(x)) = (p(f))(x), where p(f) = a01 + a1f + · · · + anf
n, and the function

g = a1f + · · · + anf
n ∈ A, because A is an algebra. Thus,

∣∣ |f(x)| − g(x)
∣∣ ≤ |a0| + ε < 2ε

for all x ∈ X. In other words, for each ε > 0, we can supply an element g ∈ A such that
‖ |f | − g‖ < 2ε. That is, |f | ∈ A.

The statement that A is a sublattice of C(X) means that if we’re given f , g ∈ A, then
max{f, g} ∈ A and min{f, g} ∈ A, too. But this is actually just a statement about real
numbers. Indeed, because

2 max{a, b} = a+ b+ |a− b| and 2 min{a, b} = a+ b− |a− b|

it follows that a subspace of C(X) is a sublattice precisely when it contains the absolute
values of all its elements.

The point to our last result is that if we’re given a closed subalgebra A of C(X), then A
is “closed” in every sense of the word: Sums, products, absolute values, max’s, and min’s of
elements from A, and even limits of sequences of these, are all back in A. This is precisely
the sort of freedom we’ll need if we hope to show that A = C(X).

Please notice that we could have avoided our appeal to the Weierstrass theorem in this
last result. Indeed, we only needed to supply polynomial approximations for the single
function |x| on [−1, 1 ], and this can be done directly. For example, we could appeal instead
to the binomial theorem, using |x| =

√
1− (1− x2); the resulting series can be shown to

converge uniformly on [−1, 1 ]. (But see also Problem 9 from Chapter 2.) By side-stepping
the classical Weierstrass theorem, it becomes a corollary to Stone’s version (rather than the
other way around).

Now we’re ready for the proof of the Stone-Weierstrass theorem. As we’ve already
pointed out, we may assume that we’re given a closed subalgebra (subspace, and sublattice)
A of C(X) and we want to show that A = C(X). We’ll break the remainder of the proof
into two steps:
Step 1: Given f ∈ C(X), x ∈ X, and ε > 0, there is an element gx ∈ A with gx(x) = f(x)
and gx(y) > f(y)− ε for all y ∈ X.

From Lemma 11.3, we know that for each y ∈ X, y 6= x, we can find an hy ∈ A so that
hy(x) = f(x) and hy(y) = f(y). Because hy − f is continuous and vanishes at both x and
y, the set Uy = {t ∈ X : hy(t) > f(t) − ε} is open and contains both x and y. Thus, the
sets (Uy)y 6=x form an open cover for X. Because X is compact, finitely many Uy suffice,
say X = Uy1 ∪ · · · ∪ Uyn . Now set gx = max{hy1 , . . . , hyn}. Because A is a lattice, we have
gx ∈ A. Note that gx(x) = f(x) because each hyi agrees with f at x. And gx > f − ε
because, given y 6= x, we have y ∈ Uyi for some i, and hence gx(y) ≥ hyi(y) > f(y)− ε.
Step 2: Given f ∈ C(X) and ε > 0, there is an h ∈ A with ‖f − h‖ < ε.

From Step 1, for each x ∈ X we can find some gx ∈ A such that gx(x) = f(x) and
gx(y) > f(y) − ε for all y ∈ X. And now we reverse the process used in Step 1: For each
x, the set Vx = {y ∈ X : gx(y) < f(y) + ε} is open and contains x. Again, because X is
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compact, X = Vx1 ∪· · ·Vxm for some x1, . . . , xm. This time, set h = min{gx1 , . . . , gxm} ∈ A.
As before, h(y) > f(y)− ε for all y, because each gxi does so, and h(y) < f(y) + ε for all y,
because at least one gxi does so.

The conclusion of Step 2 is that A is dense in C(X); but, because A is closed, this means
that A = C(X).

Corollary 11.6. If X and Y are compact metric spaces, then the subspace of C(X × Y )
spanned by the functions of the form f(x, y) = g(x)h(y), g ∈ C(X), h ∈ C(Y ), is dense in
C(X × Y ).

Corollary 11.7. If K is a compact subset of Rn, then the polynomials (in n-variables) are
dense in C(K).

Applications to C2π

In many texts, the Stone-Weierstrass theorem is used to show that the trig polynomials are
dense in C2π. One approach here might be to identify C2π with the closed subalgebra of
C[ 0, 2π ] consisting of those functions f satisfying f(0) = f(2π). Probably easier, though,
is to identify C2π with the continuous functions on the unit circle T = {eiθ : θ ∈ R} = {z ∈
C : |z| = 1} in the complex plane using the identification

f ∈ C2π ←→ g ∈ C(T), where g(eit) = f(t).

Under this correspondence, the trig polynomials in C2π match up with (certain) polynomials
in z = eit and z = e−it. But, as we’ve seen, even if we start with real-valued trig polynomials,
we’ll end up with polynomials in z and z having complex coefficients.

Given this, it might make more sense to consider the complex-valued continuous functions
on T. We’ll write CC(T) to denote the complex-valued continuous functions on T, and
CR(T) to denote the real-valued continuous functions on T. Similarly, C2π

C is the space
of complex-valued, 2π-periodic functions on R, while C2π

R stands for the real-valued, 2π-
periodic functions on R. Now, under the identification we made earlier, we have CC(T) =
C2π

C and CR(T) = C2π
R . The complex-valued trig polynomials in C2π

C now match up with
the full set of polynomials, with complex coefficients, in z = eit and z = e−it. We’ll use the
Stone-Weierstrass theorem to show that these polynomials are dense in CC(T).

Now the polynomials in z obviously separate points in T and vanish at no point of T.
Nevertheless, the polynomials in z alone are not dense in CC(T). To see this, here’s a proof
that f(z) = z cannot be uniformly approximated by polynomials in z. First, suppose that
we’re given some polynomial p(z) =

∑n
k=0 ckz

k. Then∫ 2π

0

f(eit) p(eit) dt =
∫ 2π

0

eit p(eit) dt =
n∑
k=0

ck

∫ 2π

0

ei(k+1)t dt = 0,

and so

2π =
∫ 2π

0

f(eit) f(eit) dt =
∫ 2π

0

f(eit)
[
f(eit)− p(eit)

]
dt,

because f(z) f(z) = |f(z)|2 = 1. Now, taking absolute values, we get

2π ≤
∫ 2π

0

∣∣f(eit)− p(eit)
∣∣ dt ≤ 2π‖f − p‖.
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That is, ‖f − p‖ ≥ 1 for any polynomial p.
We might as well proceed in some generality: Given a compact metric space X, we’ll

write CC(X) for the set of all continuous, complex-valued functions f : X → C, and we
norm CC(X) by ‖f‖ = max x∈X |f(x)| (where |f(x)| is the modulus of the complex number
f(x), of course). CC(X) is a Banach algebra over C. In order to make it clear which field
of scalars is involved, we’ll write CR(X) for the real-valued members of CC(X). Notice,
though, that CR(X) is nothing more than C(X) with a new name.

More generally, we’ll write AC to denote an algebra, over C, of complex-valued functions
and AR to denote the real-valued members of AC. It’s not hard to see that AR is then an
algebra, over R, of real-valued functions.

Now if f is in CC(X), then so is the function f(x) = f(x) (the complex-conjugate of
f(x)). This puts

Ref =
1
2
(
f + f

)
and Imf =

1
2i
(
f − f

)
,

the real and imaginary parts of f , in CR(X) too. Conversely, if g, h ∈ CR(X), then
g + ih ∈ CC(X).

This simple observation gives us a hint as to how we might apply the Stone-Weierstrass
theorem to subalgebras of CC(X). Given a subalgebra AC of CC(X), suppose that we could
prove that AR is dense in CR(X). Then, given any f ∈ CC(X), we could approximate Ref
and Imf by elements g, h ∈ AR. But because AR ⊂ AC, this means that g + ih ∈ AC, and
g + ih approximates f . That is, AC is dense in CC(X). Great! And what did we really
use here? Well, we need AR to contain the real and imaginary parts of “most” functions in
CC(X). If we insist that AC separate points and vanish at no point, then AR will contain
“most” of CR(X). And, to be sure that we get both the real and imaginary parts of each
element of AC, we’ll insist that AC contain the conjugates of each of its members: f ∈ AC
whenever f ∈ AC. That is, we’ll require that AC be self-conjugate (or, as some authors say,
self-adjoint).

Theorem 11.8. (Stone-Weierstrass Theorem, complex scalars) Let X be a compact metric
space, and let AC be a subalgebra, over C, of CC(X). If AC separates points in X, vanishes
at no point of X, and is self-conjugate, then AC is dense in CC(X).

Proof. Again, write AR for the set of real-valued members of AC. Because AC is self-
conjugate, AR contains the real and imaginary parts of every f ∈ AC;

Ref =
1
2
(
f + f

)
∈ AR and Imf =

1
2i
(
f − f

)
∈ AR.

Moreover, AR is a subalgebra, over R, of CR(X). In addition, AR separates points in X and
vanishes at no point of X. Indeed, given x 6= y ∈ X and f ∈ AC with f(x) 6= f(y), we must
have at least one of Ref(x) 6= Ref(y) or Imf(x) 6= Imf(y). Similarly, f(x) 6= 0 means that
at least one of Ref(x) 6= 0 or Imf(x) 6= 0 holds. That is, AR satisfies the hypotheses of the
real-scalar version of the Stone-Weierstrass theorem. Consequently, AR is dense in CR(X).

Now, given f ∈ CC(X) and ε > 0, take g, h ∈ AR with ‖g−Ref‖ < ε/2 and ‖h−Imf‖ <
ε/2. Then, g + ih ∈ AC and ‖f − (g + ih)‖ < ε. Thus, AC is dense in CC(X).

Corollary 11.9. The polynomials, with complex coefficients, in z and z are dense in CC(T).
In other words, the complex trig polynomials are dense in C2π

C .

Note that it follows from the complex-scalar proof that the real parts of the polynomials
in z and z, that is, the real trig polynomials, are dense in CR(T) = C2π

R .
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Corollary 11.10. The real trig polynomials are dense in C2π
R .

Applications to Lipschitz Functions

In most modern Real Analysis courses, the classical Weierstrass theorem is used to prove
that C[ a, b ] is separable. Likewise, the Stone-Weierstrass theorem can be used to show that
C(X) is separable, where X is a compact metric space. While we won’t have anything quite
so convenient as polynomials at our disposal, we do, at least, have a familiar collection of
functions to work with.

Given a metric space (X, d ), and 0 ≤ K <∞, we’ll write lipK(X) to denote the collection
of all real-valued Lipschitz functions on X with constant at most K; that is, f : X → R is
in lipK(X) if |f(x)−f(y)| ≤ Kd(x, y) for all x, y ∈ X. And we’ll write lip(X) to denote the
set of functions that are in lipK(X) for some K; in other words, lip(X) =

⋃∞
K=1 lipK(X).

It’s easy to see that lip(X) is a subspace of C(X); in fact, if X is compact, then lip(X) is
even a subalgebra of C(X). Indeed, given f ∈ lipK(X) and g ∈ lipM (X), we have

|f(x)g(x)− f(y)g(y)| ≤ |f(x)g(x)− f(y)g(x)|+ |f(y)g(x)− f(y)g(y)|
≤ K‖g‖ |x− y|+M‖f‖ |x− y|.

Lemma 11.11. If X is a compact metric space, then lip(X) is dense in C(X).

Proof. Clearly, lip(X) contains the constant functions and so vanishes at no point of X.
To see that lip(X) separates point in X, we use the fact that the metric d is Lipschitz:
Given x0 6= y0 ∈ X, the function f(x) = d(x, y0) satisfies f(x0) > 0 = f(y0); moreover,
f ∈ lip1(X) because

|f(x)− f(y)| = |d(x, y0)− d(y, y0)| ≤ d(x, y).

Thus, by the Stone-Weierstrass Theorem, lip(X) is dense in C(X).

Theorem 11.12. If X is a compact metric space, then C(X) is separable.

Proof. It suffices to show that lip(X) is separable. (Why?) To see this, first notice that
lip(X) =

⋃∞
K=1EK , where

EK = {f ∈ C(X) : ‖f‖ ≤ K and f ∈ lipK(X)}.

(Why?) The sets EK are (uniformly) bounded and equicontinuous. Hence, by the Arzelà-
Ascoli theorem, each EK is compact in C(X). Because compact sets are separable, as are
countable unions of compact sets, it follows that lip(X) is separable.

As it happens, the converse is also true (which is why this is interesting); see Folland [17]
or my book on Banach spaces [11] for more details.

Theorem 11.13. If C(X) is separable, where X is a compact Hausdorff topological space,
then X is metrizable.
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Appendix A

The `p Norms

For completeness, we supply a few of the missing details concerning the `p-norms. We begin
with a handful of classical inequalities of independent interest. First recall that we have
defined a scale of “norms” on Rn by setting:

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

, 1 ≤ p <∞,

and
‖x‖∞ = max

1≤i≤n
|xi|,

where x = (xi)ni=1 ∈ Rn. Please note that the case p = 2 gives the usual Euclidean norm on
Rn and that the cases p = 1 and p =∞ clearly give rise to legitimate norms on Rn.

Common parlance is to refer to these expressions as `p-norms and to refer to the space
(Rn, ‖ · ‖p) as `np . The space of all infinite sequences x = (xn)∞n=1 for which the analogous
infinite sum (or supremum) ‖x‖p is finite is referred to as `p. What’s more, there is a
“continuous” analogue of this scale: We might also consider the norms

‖f‖p =

(∫ b

a

|f(x)|p dx

)1/p

, 1 ≤ p <∞,

and
‖f‖∞ = sup

a≤x≤b
|f(x)|,

where f is in C[ a, b ] (or is simply Lebesgue integrable). The subsequent discussion actually
covers all of these cases, but we will settle for writing our proofs in the Rn setting only.

Lemma A.1. (Young’s inequality). Let 1 < p < ∞, and let 1 < q < ∞ be defined by
1
p + 1

q = 1; that is, q = p
p−1 . Then, for any a, b ≥ 0, we have

ab ≤ 1
p
ap +

1
q
bq.

Moreover, equality can only occur if ap = bq. (We refer to p and q as conjugate exponents;
note that p satisfies p = q

q−1 . Please note that the case p = q = 2 yields the familiar
arithmetic-geometric mean inequality.)
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Proof. A quick calculation before we begin:

q − 1 =
p

p− 1
− 1 =

p− (p− 1)
p− 1

=
1

p− 1
.

Now we just estimate areas; for this you might find it helpful to draw the graph of y = xp−1

(or, equivalently, the graph of x = yq−1). Comparing areas we get:

ab ≤
∫ a

0

xp−1 dx+
∫ b

0

yq−1 dy =
1
p
ap +

1
q
bq.

The case for equality also follows easily from the graph of y = xp−1 (or x = yq−1), because
b = ap−1 = ap/q means that ap = bq.

Corollary A.2. (Hölder’s inequality). Let 1 < p < ∞, and let 1 < q < ∞ be defined by
1
p + 1

q = 1. Then, for any a1, . . . , an and b1, . . . , bn in R we have:

n∑
i=1

|aibi| ≤

(
n∑
i=1

|ai|p
)1/p( n∑

i=1

|bi|q
)1/q

.

(Please note that the case p = q = 2 yields the familiar Cauchy-Schwarz inequality.)
Moreover, equality in Hölder’s inequality can only occur if there exist nonnegative scalars

α and β such that α |ai|p = β |bi|q for all i = 1, . . . , n.

Proof. Let A = (
∑n
i=1 |ai|p)

1/p and let B = (
∑n
i=1 |bi|q)

1/q. We may clearly assume that
A, B 6= 0 (why?), and hence we may divide (and appeal to Young’s inequality):

|aibi|
AB

≤ |ai|
p

pAp
+
|bi|q

qBq
.

Adding, we get:

1
AB

n∑
i=1

|aibi| ≤
1
pAp

n∑
i=1

|ai|p +
1
qBq

n∑
i=1

|bi|q =
1
p

+
1
q

= 1.

That is,
∑n
i=1 |aibi| ≤ AB.

The case for equality in Hölder’s inequality follows from what we know about Young’s
inequality: Equality in Hölder’s inequality means that either A = 0, or B = 0, or else
|ai|p/pAp = |bi|q/qBq for all i = 1, . . . , n. In short, there must exist nonnegative scalars α
and β such that α |ai|p = β |bi|q for all i = 1, . . . , n.

Notice, too, that the case p = 1 (q =∞) works, and is easy:

n∑
i=1

|aibi| ≤

(
n∑
i=1

|ai|

)(
max

1≤i≤n
|bi|
)
.

Exercise A.3. When does equality occur in the case p = 1 (q =∞)?
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Finally, an application of Hölder’s inequality leads to an easy proof that ‖ · ‖p is actually
a norm. It will help matters here if we first make a simple observation: If 1 < p < ∞ and
if q = p

p−1 , notice that

∥∥ ( |ai|p−1)ni=1

∥∥
q

=

(
n∑
i=1

|ai|p
)(p−1)/p

= ‖a‖p−1
p .

Lemma A.4. (Minkowski’s inequality). Let 1 < p <∞ and let a = (ai)ni=1, b = (bi)ni=1 ∈
Rn. Then, ‖a+ b‖p ≤ ‖a‖p + ‖b‖p.

Proof. In order to prove the triangle inequality, we once again let q be defined by 1
p + 1

q = 1,
and now we use Hölder’s inequality to estimate:

n∑
i=1

|ai + bi|p =
n∑
i=1

|ai + bi| · |ai + bi|p−1

≤
n∑
i=1

|ai| · |ai + bi|p−1 +
n∑
i=1

|bi| · |ai + bi|p−1

≤ ‖a‖p · ‖ ( |ai + bi|p−1)ni=1‖q + ‖y‖p · ‖ ( |ai + bi|p−1)ni=1‖q
= ‖a+ b‖p−1

p ( ‖a‖p + ‖b‖p) .

That is, ‖a+ b‖pp ≤ ‖a+ b‖p−1
p ( ‖a‖p + ‖b‖p), and the triangle inequality follows.

If 1 < p < ∞, then equality in Minkowski’s inequality can only occur if a and b are
parallel; that is, the `p-norm is strictly convex for 1 < p < ∞. Indeed, if ‖a + b‖p =
‖a‖p + ‖b‖p, then either a = 0, or b = 0, or else a, b 6= 0 and we have equality at each stage
of our proof. Now equality in the first inequality means that |ai + bi| = |ai| + |bi|, which
easily implies that ai and bi have the same sign. Next, equality in our application of Hölder’s
inequality implies that there are nonnegative scalars C and D such that |ai|p = C |ai + bi|p
and |bi|p = D |ai + bi|p for all i = 1, . . . , n. Thus, ai = E bi for some scalar E and all
i = 1, . . . , n.

Of course, the triangle inequality also holds in either of the cases p = 1 or p =∞ (with
much simpler proofs).

Exercise A.5. When does equality occur in the triangle inequality in the cases p = 1 or
p =∞? In particular, show that neither of the norms ‖ · ‖1 or ‖ · ‖∞ is strictly convex.
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Appendix B

Completeness and Compactness

Next, we provide a brief review of completeness and compactness. Such review is doomed
to inadequacy; the reader unfamiliar with these concepts would be well served to consult a
text on advanced calculus such as [29] or [46].

To begin, we recall that a subset A of normed space X (such as R or Rn) is said to be
closed if A is closed under the taking of sequential limits. That is, A is closed if, whenever
(an) is a sequence from A converging to some point x ∈ X, we always have x ∈ A. It’s not
hard to see that any closed interval, such as [ a, b ] or [ a,∞), is, indeed, a closed subset of
R in this sense. There are, however, much more complicated examples of closed sets in R.

A normed space X is said to be complete if every Cauchy sequence from X converges
(to a point in X). It is a familiar fact from Calculus that R is complete, as is Rn. In fact,
the completeness of R is often assumed as an axiom (in the form of the least upper bound
axiom). There are, however, many examples of normed spaces which are not complete; that
is, there are examples of normed spaces in which Cauchy sequences need not converge.

We say that a subset A of a normed space X is complete if every Cauchy sequence
from A converges to a point in A. Please note here that we require not only that Cauchy
sequences from A converge, but also that the limit be back in A. As you might imagine,
the completeness of A depends on properties of both A and the containing space X.

First note that a complete subset is necessarily also closed. Indeed, because every con-
vergent sequence is also Cauchy, it follows that a complete subset is closed.

Exercise B.1. If A is a complete subset of a normed space X, show that A is also closed.

If the containing space X is itself complete, then it’s easy to tell which of its subsets are
complete. Indeed, because every Cauchy sequence in X converges (somewhere), all we need
to know is whether the subset is closed.

Exercise B.2. Let A be a subset of a complete normed space X. Show that A is complete
if and only if A is a closed subset of X. In particular, please note that every closed subset
of R (or Rn) is complete.

Virtually all of the normed spaces encountered in these notes are complete. In some
cases, this fact is very easy to check; in others, it can be a bit of a challenge. A few
additional tools could prove useful.
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To get us started, here is an easy and often used reduction: In order to prove complete-
ness, it’s not necessary to show that every Cauchy sequence converges; rather, it suffices to
show that every Cauchy sequence has a convergent subsequence.

Exercise B.3. If (xn) is a Cauchy sequence and if a subsequence (xnk) converges to a point
x ∈ X, show that (xn) itself converges to x.

Exercise B.4. Given a Cauchy sequence (xn) in a normed space X, there exists a subse-
quence (xnk) satisfying

∑
k ‖xnk+1 − xnk‖ <∞. (A sequence with summable increments is

occasionally referred to as a fast Cauchy sequence.) Conclude that X is complete if and
only if every fast Cauchy sequence converges.

Next, here is a very general criterion for checking whether a given norm is complete, due
to Banach from around 1922. It’s quite useful and often very easy to apply.

Theorem B.5. A normed linear space (X, ‖ · ‖) is complete if and only if every absolutely
summable series is summable; that is, if and only if, given a sequence in X for which∑∞
n=1 ‖xn‖ <∞, there exists an element x ∈ X such that

∥∥∥x−∑N
n=1 xn

∥∥∥→ 0 as N →∞.

Proof. One direction is easy. Suppose that X is complete and that
∑∞
n=1 ‖xn‖ < ∞. Let

sN =
∑N
n=1 xn. Then, (sN ) is a Cauchy sequence. Indeed, given M < N , we have

‖sN − sM‖ =

∥∥∥∥∥
N∑

n=M+1

xn

∥∥∥∥∥ ≤
N∑

n=M+1

‖xn‖ → 0

as M , N →∞. (Why?) Thus, (sN ) converges in X (by assumption).
On the other hand, suppose that every absolutely summable series is summable, and let

(xn) be a Cauchy sequence in X. By passing to a subsequence, if necessary, we may suppose
that ‖xn − xn+1‖ < 2−n for all n. (How?) But then,

N∑
n=1

(xn − xn+1) = x1 − xN+1

converges in X because
∑∞
n=1 ‖xn − xn+1‖ <∞. Thus, (xn) converges.

We next recall that a subset A of a normed space X is said to be compact if every
sequence from A has a subsequence which converges to a point in A. Again, because we
have insisted that certain limits remain in A, it’s not hard to see that compact sets are
necessarily also closed.

Exercise B.6. If A is a compact subset of a normed space X, show that A is also closed.

Moreover, because a Cauchy sequence with a convergent subsequence must itself con-
verge, it follows that every compact set is complete.

Exercise B.7. If A is a compact subset of a normed space X, show that A is also complete.

Because the compactness of a subset A has something to do with every sequence in A,
it’s not hard to believe that it is a more stringent property than the others we’ve considered
so far. In particular, it’s not hard to see that a compact set must be bounded.
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Exercise B.8. If A is a compact subset of a normed space X, show that A is also bounded.
[Hint: If not, then A would contain a sequence (an) with ‖an‖ → ∞.]

Now it is generally not so easy to describe the compact subsets of a particular normed
space X, however, it is quite easy to describe the compact subsets of R (or Rn). This
well-known result goes by many names; we will refer to it as the Heine-Borel theorem.

Theorem B.9. A subset A of R (or Rn) is compact if and only if A is both closed and
bounded.

Proof. One direction of the proof is easy: As we’ve already seen, compact sets in R are
necessarily closed and bounded. For the other direction, notice that if A is a bounded
subset of R, then it follows from the Bolzano-Weierstrass theorem that every sequence from
A has a subsequence which converges in R. If A is also a closed set, then this limit must, in
fact, be back in A. Thus, every sequence in A has a subsequence converging to a point in
A.

It is important to note here that the Heine-Borel theorem does not typically hold in the
more general setting of metric spaces. By way of an example, consider the set B = {x ∈ `1 :
‖x‖1 ≤ 1} in the normed linear space `1 (consisting of all absolutely summable sequences).
It’s easy to see that B is bounded and not too hard to see that B is closed. However, B is
not compact. To see this, consider the sequence (of sequences!) defined by

en = (

n−1 zeros︷ ︸︸ ︷
0, . . . , 0 , 1, 0, 0, . . . ) n = 1, 2, . . .

(that is, there is a single nonzero entry, a 1, in the n-th coordinate). It’s easy to see that
‖en‖1 = 1 and, hence, en ∈ B for every n. But (en) has no convergent subsequence because
‖en − em‖1 = 2 for any n 6= m. Thus, B is not compact.

It is also worth noting that there are other characterizations of compactness, including
a few that will carry over successfully to even the very general setting of topological spaces.
One such characterization is given below, without proof. (It is offered here as a theorem, but
it is more typically given as a definition, from which other characterizations are derived.)
For further details, see [46], [10], or [51].

Theorem B.10. A topological space X is compact if and only if the following condition
holds: Given any collection U of open sets in X with the property that X =

⋃
{V : V ∈ U},

there exist finitely many sets U1, . . . , Un in U such that X =
⋃n
k=1 Uk.

Finally, let’s speak briefly about of continuous functions defined on compact sets. Specif-
ically, we will consider a continuous function, real-valued function f defined on a compact
interval [ a, b ] in R, but much of what we have to say will carry over to the more general
setting of a continuous function defined on a compact metric space (taking values in another
metric space). The key fact we need is that a continuous function defined on a compact set
is bounded.

Theorem B.11. Let f : [ a, b ]→ R be continuous. Then f is bounded. Moreover, f attains
both its maximum and minimum values on [ a, b ]; that is, there exist points x1, x2 in [ a, b ]
such that

f(x1) = max
a≤x≤b

f(x) and f(x2) = min
a≤x≤b

f(x).
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Proof. If, to the contrary, f is not bounded, then we can find a sequence of points (xn)
in [ a, b ] satisfying |f(xn)| > n. It follows that no subsequence of

(
f(xn)

)
could possibly

converge, for convergent sequences are bounded. This leads to a contradiction: By the
Heine-Borel theorem, (xn) must have a convergent subsequence and, by the continuity of f ,
the corresponding subsequence of

(
f(xn)

)
would necessarily converge. This contradiction

proves that f is bounded.
We next prove that f attains its maximum value (and leave the other case as an exercise).

From the first part of the proof, we know that M ≡ sup a≤x≤b f(x) is a finite, real number.
Thus, we can find a sequence of values

(
f(xn)

)
converging to M . But, by passing to a

subsequence, if necessary, we may suppose that (xn) converges to some point x1 in [ a, b ].
Clearly, x1 satisfies f(x1) = M .



Appendix C

Pointwise and Uniform
Convergence

We next offer a brief review of pointwise and uniform convergence. We begin with an
elementary example:

Example C.1.

(a) For each n = 1, 2, 3, . . ., consider the function fn(x) = ex + x
n for x ∈ R. Note that for

each (fixed) x the sequence (fn(x))∞n=1 converges to f(x) = ex because

|fn(x)− f(x)| = |x|
n
→ 0 as n→∞.

In this case we say that the sequence of functions (fn) converges pointwise to the
function f on R. But notice, too, that the rate of convergence depends on x. In
particular, in order to get |fn(x)− f(x)| < 1/2 we would need to take n > 2|x|. Thus,
at x = 2, the inequality is satisfied for all n > 4, while at x = 1000, the inequality is
satisfied only for n > 2000. In short, the rate of convergence is not uniform in x.

(b) Consider the same sequence of functions as above, but now let’s suppose that we
restrict that values of x to the interval [−5, 5 ]. Of course, we still have that fn(x)→
f(x) for each (fixed) x in [−5, 5 ]; in other words, we still have that (fn) converges
pointwise to f on [−5, 5 ]. But notice that the rate of convergence is now uniform over
x in [−5, 5 ]. To see this, just rewrite the initial calculation:

|fn(x)− f(x)| = |x|
n
≤ 5
n

for x ∈ [−5, 5 ],

and notice that the upper bound 5/n tends to 0, as n→∞, independent of the choice
of x. In this case, we say that (fn) converges uniformly to f on [−5, 5 ]. The point
here is that the notion of uniform convergence depends on the underlying domain as
well as on the sequence of functions at hand.

With this example in mind, we now offer formal definitions of pointwise and uniform
convergence. In both cases we consider a sequence of functions fn : X → R, n = 1, 2, 3, . . .,
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each defined on the same underlying set X, and another function f : X → R (the candidate
for the limit).

We say that (fn) converges pointwise to f on X if, for each x ∈ X, we have fn(x)→ f(x)
as n→∞; thus, for each x ∈ X and each ε > 0, we can find an integer N (which depends
on ε and which may also depend on x) such that |fn(x) − f(x)| < ε whenever n > N . A
convenient shorthand for pointwise convergence is: fn → f on X or, if X is understood,
simply fn → f .

We say that (fn) converges uniformly to f on X if, for each ε > 0, we can find an integer
N (which depends on ε but not on x) such that |fn(x)− f(x)| < ε for each x ∈ X, provided
that n > N . Please notice that the phrase “for each x ∈ X” now occurs well after the phrase
“for each ε > 0” and, in particular, that the rate of convergence N does not depend on x. It
should be reasonably clear that uniform convergence implies pointwise convergence; in other
words, uniform convergence is “stronger” than pointwise convergence. For this reason, we
sometimes use the shorthand: fn ⇒ f on X or, if X is understood, simply fn ⇒ f .

The definition of uniform convergence can be simplified by “hiding” one of the quantifiers
under different notation; indeed, note that the phrase “|fn(x) − f(x)| < ε for any x ∈ X”
is (essentially) equivalent to the phrase “supx∈X |fn(x) − f(x)| < ε.” Thus, our definition
may be reworded as follows: (fn) converges uniformly to f on X if, given ε > 0, there is an
integer N such that supx∈X |fn(x)− f(x)| < ε for all n > N .

The notion of uniform convergence exists for one very good reason: Continuity is pre-
served under uniform limits. This fact is well worth stating.

Exercise C.2. Let X be a subset of R, let f , fn : X → R for n = 1, 2, 3, . . ., and let
x0 ∈ X. If each fn is continuous at x0, and if fn ⇒ f on X, then f is continuous at x0. In
particular, if each fn is continuous on all of X, then so is f . Give an example showing that
this result may fail if we only assume that fn → f on X.

Finally, let’s consolidate all of our findings into a useful and concrete conclusion. Given a
compact interval [ a, b ] in R, we denote the vector space of continuous, real-valued functions
f : [ a, b ]→ R by C[ a, b ]. Because [ a, b ] is compact, we know that every element of C[ a, b ]
is bounded. Thus, the expression

‖f‖ = sup
a≤x≤b

|f(x)|, (C.1)

which is often called the sup-norm, is well-defined and finite for every f in C[ a, b ]. In fact,
it’s easy to see that (C.1) defines a norm on C[ a, b ].

Exercise C.3. Show that (C.1) defines a norm on C[ a, b ].

In light of our earlier discussion, it follows that convergence in the sup-norm in C[ a, b ]
is equivalent to uniform convergence; that is, a sequence (fn) in C[ a, b ] converges to an
element f in C[ a, b ] under the sup-norm if and only if fn ⇒ f on [ a, b ]. For this reason,
(C.1) is often called the uniform norm. Whatever we decide to call it, it’s considered the
norm of choice on C[ a, b ], in part because C[ a, b ] so happens to be complete under this
norm.

Theorem C.4. C[ a, b ] is complete under the norm (C.1).
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Proof. Let (fn) be a sequence in C[ a, b ] that is Cauchy under the sup-norm; that is, for
every ε > 0, there exists an index N such that

sup
a≤x≤b

|fm(x)− fn(x)| = ‖fm − fn‖ < ε

whenever m, n ≥ N . In particular, for any fixed x in [ a, b ] note that we have |fm(x) −
fn(x)| ≤ ‖fm − fn‖. It follows that the sequence

(
f(xn)

)
is Cauchy in R. (Why?) Thus,

f(x) = lim
n→∞

fn(x)

is a well-defined, real-valued function on [ a, b ]. We will show that f is in C[ a, b ] and that
fn ⇒ f . (But, in fact, we need only prove the second assertion, as the first will then follow.)

Given ε > 0, choose N such that ‖fm − fn‖ < ε whenever m, n ≥ N . Then, given any
x in [ a, b, ], we have

|f(x)− fn(x)| = lim
m→∞

|fm(x)− fn(x)| ≤ ε

provided that n ≥ N . Because this bound is independent of x we’ve actually shown that
sup a≤x≤b |f(x)− fn(x)| ≤ ε whenever n ≥ N . In other words, we’ve shown that fn ⇒ f on
[ a, b ].
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Appendix D

Brief Review of Linear Algebra

Sums and Quotients

We discuss sums and quotients of vector spaces. In what follows, there is no harm in
assuming that all vector spaces are finite-dimensional.

To begin, given vector spaces X and Y , we write X ⊕ Y to denote the direct sum of X
and Y , which may be viewed as the set of all ordered pairs (x, y), x ∈ X, y ∈ Y , endowed
with the operations

(u, v) + (x, y) = (u+ x, v + y), u, x ∈ X, v, y ∈ Y
and

α(x, y) = (αx, αy), α ∈ R, x ∈ X, y ∈ Y.

It is commonplace to ask whether a given vector space may be written as the sum of
“smaller” factors. In particular, given subspaces Y and Z of a vector space X, we might ask
whether X is isomorphic to Y ⊕Z, which we will paraphrase here by simply asking whether
X equals Y ⊕ Z. Such a pair of subspaces is said to be complementary.

It’s not difficult to see that if each x ∈ X can be uniquely written as a sum, x = y + z,
where y ∈ Y and z ∈ Z, then X = Y ⊕Z. Indeed, because every vector x can be so written,
we must have X = span(Y ∪Z) and, by uniqueness of the sum, we must have Y ∩Z = {0};
it follows that the natural splitting x 7→ y + x induces a vector space isomorphism (i.e., a
linear, one-to-one, onto map) x 7→ (y, z) between X and Y ⊕ Z. Moreover, this natural
splitting induces linear idempotent maps P : X → X and Q : X → X by setting P (x) = y
and Q(x) = z whenever x = y+z, y ∈ Y , z ∈ Z. That is, P and Q are linear and also satisfy
P (P (x)) = P (x) and Q(Q(x)) = Q(x). An idempotent map is often called a projection,
and so we might say that P and Q are linear projections. Please note that P +Q = I, the
identity map on X, and kerP = Z while kerQ = Y . In addition, because P and Q are
idempotents, note that rangeP = Y while rangeQ = Z. For this reason, we might refer to
P and Q = I − P as complementary projections.

Conversely, given a linear projection P : X → X with range Y and kernel Z, it’s not
hard to see that we must have X = Y ⊕ Z. Indeed, in this case the isomorphism is given
by x 7→ (P (x), x−P (x)). Rather than prove this directly, it may prove helpful to state this
result in other terms. For this, we need the notion of a quotient vector space.

Each subspace M of a finite-dimensional vector space X induces an equivalence relation
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on X by
x ∼ y ⇐⇒ x− y ∈M.

Standard arguments show that the equivalence classes under this relation are the cosets
(translates) x+M , x ∈ X. That is,

x+M = y +M ⇐⇒ x− y ∈M ⇐⇒ x ∼ y.

Equally standard is the induced vector arithmetic

(x+M) + (y +M) = (x+ y) +M and α(x+M) = (αx) +M,

where x, y ∈ X and α ∈ R. The collection of cosets (or equivalence classes) is a vector space
under these operations; it’s denoted by X/M and called the quotient of X by M . Please
note the the zero vector in X/M is simply M itself.

Associated to the quotient space X/M is the quotient map q(x) = x + M . It’s easy to
check that q : X → X/M is a vector space homomorphism with kernel M . (Why?)

Next we recall the isomorphism theorem.

Theorem D.1. Let T : X → Y be a linear map between vector spaces, and let q :
X → X/ kerT be the quotient map. Then, there exists a (unique, into) isomorphism
S : X/ kerT → Y satisfying S(q(x)) = T (x) for every x ∈ X.

Proof. Because q maps onto X/ kerT , it’s “legal” to define a map S : X/ kerT → Y by
setting S(q(x)) = T (x) for x ∈ X. Please note that S is well-defined because

T (x) = T (y) ⇐⇒ T (x− y) = 0 ⇐⇒ x− y ∈ kerT
⇐⇒ q(x− y) = 0 ⇐⇒ q(x) = q(y).

It’s easy to see that S is linear, and so precisely the same argument as above shows that S
is one-to-one.

Corollary D.2. Let T : X → Y be a linear map between vector spaces. Then the range of
T is isomorphic to X/ kerT . Moreover, X is isomorphic to (rangeT )⊕ (kerT ).

Corollary D.3. If P : X → X is a linear projection on a vector space X with range Y and
kernel Z, then X is isomorphic to Y ⊕ Z.

Inner Product Spaces

Let X be a vector space over R. An inner product on X is a function 〈·, ·〉 : X × X → R
satisfying

1. 〈x, y 〉 = 〈 y, x 〉 for all x, y ∈ X.

2. 〈 ax+ by, z 〉 = a〈x, z 〉+ b〈 y, z 〉 for all x, y, z ∈ X and all a, b ∈ R.

3. 〈x, x 〉 ≥ 0 for all x ∈ X and 〈x, x 〉 = 0 only when x = 0.



129

It follows from conditions 1 and 2 that an inner product must be bilinear ; that is, linear
in each coordinate. Condition 3 is often paraphrased by saying that an inner product is
positive definite. Thus, in brief, an inner product on X is a positive definite bilinear form.

An inner product on X induces a norm on X by setting

‖x‖ = 〈x, x 〉, x ∈ X.

This is by no means obvious, by the way, and requires some explanation. The first step
along this path is the Cauchy-Schwarz inequality.

Lemma D.4. For any x, y ∈ X we have
∣∣ 〈x, y 〉 ∣∣ ≤ ‖x‖ ‖y‖.

Proof. If either of x or y is 0, the inequality clearly holds; thus, we may suppose that
x 6= 0 6= y. Now, for any scalar α ∈ R, consider:

0 ≤ 〈x− αy, x− αy 〉 = 〈x, x 〉 − 2α〈x, y 〉+ α2〈 y, y 〉 (D.1)
= ‖x‖2 − 2α〈x, y 〉+ α2‖y‖2. (D.2)

Because x and y are fixed, the right-hand side of (D.2) defines a quadratic in the real variable
α which, according to the left-hand side of (D.1), is of constant sign on R. It follows that
the discriminant of this quadratic cannot be positive; that is, we must have

4〈x, y 〉2 − 4‖x‖ ‖y‖ ≤ 0,

which is plainly equivalent to the assertion in the lemma.

According to the Cauchy-Schwarz inequality,∣∣ 〈x, y 〉 ∣∣
‖x‖ ‖y‖

=
∣∣∣∣ 〈 x

‖x‖
,
y

‖y‖

〉 ∣∣∣∣ ≤ 1

for any pair of nonzero vectors x, y ∈ X. That is, the expression 〈x/‖x‖, y/‖y‖ 〉 takes
values between −1 and 1 and, as such, must be the cosine of some angle. Thus, we may
define this expression to be the cosine of the angle between the vectors x and y; in other
words, we define the angle between x and y to be the (unique) angle θ in [ 0, 2π) satisfying

cos θ =

∣∣ 〈x, y 〉 ∣∣
‖x‖ ‖y‖

.

In particular, note that 〈x, y 〉 = 0 (for nonzero vectors x and y) if and only if the angle
between x and y is π/2. For this reason, we say that x and y are orthogonal (or perpen-
dicular) if 〈x, y 〉 = 0. Of course, the zero vector is orthogonal to every vector and, in fact,
because the inner product is positive definite, the converse is true, too: The only vector x
satisfying 〈x, y 〉 = 0 for all vectors y is x = 0.

Lemma D.5. The expression ‖x‖ =
√
〈x, x 〉 defines a norm on X.
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Proof. It’s easy to check that ‖x‖ is a nonnegative expression satisfying ‖x‖ = 0 only for
x = 0, and it’s easy to see that ‖αx‖ = |α| ‖x‖ for any scalar α. Thus, it only remains to
prove the triangle inequality. For this, we appeal to the Cauchy-Schwarz inequality:

‖x+ y‖2 = 〈x+ y, x+ y 〉
= ‖x‖2 + 2〈x, y 〉+ ‖y‖2 (D.3)
≤ ‖x‖2 + 2‖x‖ ‖y‖+ ‖y‖2

=
(
‖x‖+ ‖y‖

)2
.

Equation (D.3), which is entirely analogous to the law of cosines, by the way, holds the
key to installing Euclidean geometry on an inner product space.

Corollary D.6. (The Pythagorean Theorem) In an inner product space, ‖x + y‖2 =
‖x‖2 + ‖y‖2 if and only if 〈x, y 〉 = 0.

Corollary D.7. (The Parallelogram Identity) For any x, y in an inner product space X,
we have ‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

We say that a set of vectors {xα : α ∈ A} is orthogonal (or, more accurately, mutually
orthogonal) if 〈xα, xβ 〉 = 0 for any α 6= β ∈ A. If, in addition, each xα has norm one; that
is, if 〈xα, xα 〉 = 1 for all α ∈ A, we say that {xα : α ∈ A} is an orthonormal set of vectors.
It is easy to see that an orthogonal set of nonzero vectors must be linearly independent.
Indeed, if x1, . . . , xn are mutually orthogonal nonzero vectors in an inner product space X,
and if we set y =

∑n
i=1 αixi for some choice of of scalars α1, . . . , αn, then we have

〈 y, xj 〉 =
n∑
i=1

αi〈xi, xj 〉 = αj〈xj , xj 〉.

Thus,

αi =
〈 y, xi 〉
〈xi, xi 〉

; that is, y =
n∑
i=1

〈 y, xi 〉
〈xi, xi 〉

xi.

In particular, it follows that y = 0 if and only if αi = 0 for all i which occurs if and only if
〈 y, xi 〉 = 0 for all i. Thus, the vectors x1, . . . , xn are linearly independent. Moreover, the
coefficients of y, relative to the xi, can be readily computed.

It is a natural question, then, whether an inner product space has a basis consisting
of mutually orthogonal vectors. The answer is Yes and there are a couple of ways to see
this. Perhaps easiest is to employ the Gram-Schmidt process which provides a technique for
constructing orthogonal vectors.

Exercise D.8. Let x1, . . . , xn be nonzero and orthogonal and let x ∈ X.

(a) x ∈ span{xj : j = 1, . . . , n} if and only if x =
∑n
j=1

〈x,xj〉
〈xj ,xj〉 xj .

(b) For any x, the vector y = x−
∑n
j=1

〈x,xj〉
〈xj ,xj〉 xj is orthogonal to each xj .

(c)
∑n
j=1

〈x,xj〉
〈xj ,xj〉 xj is the nearest point to x in span{xj : j = 1, . . . , n}.

(d) x ∈ span{xj : j = 1, . . . , n} if and only if ‖x‖2 =
∑n
j=1

∣∣∣ 〈x,xj〉〈xj ,xj〉

∣∣∣2.
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Exercise D.9. (The Gram-Schmidt Process) Let (en) be a linearly independent sequence
in X. Then there is an essentially unique orthogonal sequence (xn) such that

span{x1, . . . , xk} = span{e1, . . . , ek}

for all k. [Hint: Use induction and the results in Exercise D.8 to define xk+1 = ek+1 − v,
where v ∈ span{x1, . . . , xk}.]

Corollary D.10. Every finite-dimensional inner product space has an orthonormal basis.

Using techniques entirely similar to those used in proving that every vector space has a
(Hamel) basis (see, for example, [8]), it can be shown that every inner product space has an
orthonormal basis.

Theorem D.11. Every inner product space has an orthonormal basis.
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Appendix E

Continuous Linear
Transformations

We next discuss continuity for linear transformations (or operators) between normed vector
spaces. Throughout this section, we consider a linear map T : V → W between vector
spaces V and W ; that is we suppose that T satisfies T (αx + βy) = αT (x) + βT (y) for all
x, y ∈ V , and all scalars α, β. Please note that every linear map T satisfies T (0) = 0. If
we further suppose that V is endowed with the norm ‖ · ‖, and that W is endowed with the
norm ||| · ||| , the we may consider the issue of continuity of the map T .

The key result for our purposes is that, for linear maps, continuity—even at a single
point—is equivalent to uniform continuity (and then some!).

Theorem E.1. Let (V, ‖ · ‖ ) and (W, ||| · ||| ) be normed vector spaces, and let T : V →W be
a linear map. Then, the following are equivalent:

(i) T is Lipschitz;

(ii) T is uniformly continuous;

(iii) T is continuous (everywhere);

(iv) T is continuous at 0 ∈ V ;

(v) there is a constant C <∞ such that ||| T (x) ||| ≤ C‖x‖ for all x ∈ V .

Proof. Clearly, (i) =⇒ (ii) =⇒ (iii) =⇒ (iv). We need to show that (iv) =⇒ (v), and that
(v) =⇒ (i) (for example). The second of these is easier, so let’s start there.

(v) =⇒ (i): If condition (v) holds for a linear map T , then T is Lipschitz (with constant
C) because ||| T (x)− T (y) ||| = ||| T (x− y) ||| ≤ C‖x− y‖ for any x, y ∈ V .

(iv) =⇒ (v): Suppose that T is continuous at 0. Then we may choose a δ > 0 so that
||| T (x) ||| = ||| T (x)− T (0) ||| ≤ 1 whenever ‖x‖ = ‖x− 0‖ ≤ δ. (How?)

Given 0 6= x ∈ V , we may scale by the factor δ/‖x‖ to get
∥∥ δx/‖x‖ ∥∥ = δ. Hence,∣∣∣∣∣∣ T (δx/‖x‖) ∣∣∣∣∣∣ ≤ 1. But T

(
δx/‖x‖

)
= (δ/‖x‖)T (x), because T is linear, and so we get

||| T (x) ||| ≤ (1/δ)‖x‖. That is, C = 1/δ works in condition (v). (Note that because condition
(v) is trivial for x = 0, we only care about the case x 6= 0.)
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A linear map satisfying condition (v) of the Theorem (i.e., a continuous linear map) is
often said to be bounded. The meaning in this context is slightly different than usual. Here
it means that T maps bounded sets to bounded sets. This follows from the fact that T is
Lipschitz. Indeed, if ||| T (x) ||| ≤ C‖x‖ for all x ∈ V , then (as we’ve seen) ||| T (x)− T (y) ||| ≤
C‖x − y‖ for any x, y ∈ V , and hence T maps the ball about x of radius r into the ball
about T (x) of radius Cr. In symbols, T

(
Br(x)

)
⊂ BCr(T (x)). More generally, T maps a

set of diameter d into a set of diameter at most Cd. There’s no danger of confusion in our
using the word bounded to mean something new here; the ordinary usage of the word (as
applied to functions) is uninteresting for linear maps. A nonzero linear map always has an
unbounded range. (Why?)

The smallest constant that works in (v) is called the norm of the operator T and is
usually written ‖T‖. In symbols,

‖T‖ = sup
x 6=0

||| Tx |||
‖x‖

= sup
‖x‖=1

||| Tx ||| .

Thus, T is bounded (continuous) if and only if ‖T‖ <∞.
The fact that all norms on a finite-dimensional normed space are equivalent provides a

final (rather spectacular) corollary.

Corollary E.2. Let V and W be normed vector spaces with V finite-dimensional. Then,
every linear map T : V →W is continuous.

Proof. Let x1, . . . , xn be a basis for V and let ‖
∑n
i=1 αixi‖1 =

∑n
i=1 |αi|, as before. From

the Lemma on page 3, we know that there is a constant B <∞ such that ‖x‖1 ≤ B ‖x‖ for
every x ∈ V .

Now if T : (V, ‖ · ‖ )→ (W, ||| · ||| ) is linear, we get∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ T

(
n∑
i=1

αixi

) ∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

αiT (xi)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

≤
n∑
i=1

|αi| ||| T (xi) |||

≤
(

max
1≤j≤n

||| T (xj) |||
) n∑
i=1

|αi|

≤ B

(
max

1≤j≤n
||| T (xj) |||

)∥∥∥∥∥
n∑
i=1

αixi

∥∥∥∥∥ .
That is, ||| T (x) ||| ≤ C‖x‖, where C = Bmax 1≤j≤n ||| T (xj) ||| (a constant depending only
on T and the choice of basis for V ). From our last result, T is continuous (bounded).
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Linear Interpolation

Although we won’t need anything quite so fancy, it is of some interest to discuss more general
problems of interpolation. We again suppose that we are given distinct points x0 < · · · < xn
in [ a, b ], but now we suppose that we are given an array of information

y0 y′0 y′′0 . . . y
(m0)
0

y1 y′1 y′′1 . . . y
(m1)
1

...
...

...
...

yn y′n y′′n . . . y
(mn)
n ,

where each mi is a nonnegative integer. Our problem is to find the polynomial p of least
degree that incorporates all of this data by satisfying

p(x0) = y0 p ′(x0) = y′0 . . . p(m0)(x0) = y
(m0)
0

p(x1) = y1 p ′(x1) = y′1 . . . p(m1)(x1) = y
(m1)
1

...
...

...
p(xn) = yn p ′(xn) = y′n . . . p(mn)(xn) = y

(mn)
n .

In other words, we specify not only the value of p at each xi, but also the first mi derivatives
of p at xi. This is often referred to as the problem of Hermite interpolation.

Because the problem has a total of m0 + m1 + · · · + mn + n + 1 “degrees of freedom,”
it won’t come as any surprise that is has a (unique) solution p of degree (at most) N =
m0 + m1 + · · · + mn + n. Rather than discuss this particular problem any further, let’s
instead discuss the general problem of linear interpolation.

The notational framework for our problem is an n-dimensional vector space X on which
m linear, real-valued functions (or linear functionals) L1, . . . , Lm are defined. The general
problem of linear interpolation asks whether the system of equations

Li(f) = yi, i = 1, . . . ,m (F.1)

has a (unique) solution f ∈ X for any given set of scalars y1, . . . , ym ∈ R. Because a linear
functional is completely determined by its values on any basis, we would next be led to
consider a basis f1, . . . , fn for X, and from here it is a small step to rewrite (F.1) as a
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matrix equation. That is, we seek a solution f = a1f1 + · · ·+ anfn satisfying

a1L1(f1) + · · ·+ anL1(fn) = y1

a1L2(f1) + · · ·+ anL2(fn) = y2
...

a1Lm(f1) + · · ·+ anLm(fn) = ym.

If we are to guarantee a solution a1, . . . , an for each choice of y1, . . . , ym, then we’ll need to
have m = n and, moreover, the matrix [Li(fj)] will have to be nonsingular.

Lemma F.1. Let X be an n-dimensional vector space with basis vectors f1, . . . , fn, and
let L1, . . . , Ln be linear functionals on X. Then, L1, . . . , Ln are linearly independent if and
only if the matrix [Li(fj)] is nonsingular; that is, if and only if det

(
Li(fj)

)
6= 0.

Proof. If [Li(fj)] is singular, then the matrix equation

c1L1(f1) + · · ·+ cnLn(f1) = 0
c1L1(f2) + · · ·+ cnLn(f2) = 0

...
c1L1(fn) + · · ·+ cnLn(fn) = 0

has a nontrivial solution c1, . . . , cn. Thus, the functional c1L1 + · · ·+ cnLn satisfies

(c1L1 + · · ·+ cnLn)(fi) = 0, i = 1, . . . , n.

Because f1, . . . , fn form a basis for X, this means that

(c1L1 + · · ·+ cnLn)(f) = 0

for all f ∈ X. That is, c1L1 + · · · + cnLn = 0 (the zero functional), and so L1, . . . , Ln are
linearly dependent.

Conversely, if L1, . . . , Ln are linearly dependent, just reverse the steps in the first part
of the proof to see that [Li(fj)] is singular.

Theorem F.2. Let X be an n-dimensional vector space and let L1, . . . , Ln be linear func-
tionals on X. Then the interpolation problem

Li(f) = yi, i = 1, . . . , n (F.2)

always has a (unique) solution f ∈ X for any choice of scalars y1, . . . , yn if and only if
L1, . . . , Ln are linearly independent.

Proof. Let f1, . . . , fn be a basis for X. Then (F.2) is equivalent to the system of equations

a1L1(f1) + · · ·+ anL1(fn) = y1

a1L2(f1) + · · ·+ anL2(fn) = y2
...

a1Ln(f1) + · · ·+ anLn(fn) = yn

(F.3)
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by taking f = a1f1 + · · · + anfn. Thus, (F.2) always has a solution if and only if (F.3)
always has a solution if and only if [Li(fj)] is nonsingular if and only if L1, . . . , Ln are
linearly independent. In any of these cases, note that the solution must be unique.

In the case of Lagrange interpolation, X = Pn and Li is evaluation at xi; i.e., Li(f) =
f(xi), which is easily seen to be linear in f . Moreover, L0, . . . , Ln are linearly independent
provided that x0, . . . , xn are distinct. (Why?)

In the case of Hermite interpolation, the linear functionals are of the form Lx,k(f) =
f (k)(x), differentiation composed with a point evaluation. If k 6= m, then Lx,k and Lx,m are
linearly independent; if x 6= y, then Lx,k and Ly,m are linearly independent for any k and
m. (How would you check this?)
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Appendix G

The Principle of Uniform
Boundedness

Our goal in this section is to give an elementary proof of:

Theorem G.1. (The Uniform Boundedness Theorem) Let (Tα)α∈A be a family of linear
maps from a complete normed linear space X into a normed linear space Y . If the family
is pointwise bounded, then it is, in fact, uniformly bounded. That is, if, for each x ∈ X,

sup
α∈A
‖Tα(x)‖ < ∞,

then, in fact,
sup
α∈A
‖Tα‖ = sup

α∈A
sup
‖x‖=1

‖Tα(x)‖ < ∞.

Proof. Suppose that supα ‖Tα‖ = ∞. We will extract a sequence of operators (Tn) and
construct a sequence of vectors (xn) such that

(a) ‖xn‖ = 4−n, for all n, and

(b) ‖Tn(x)‖ > n, for all n, where x =
∑∞
n=1 xn.

To better understand the proof, consider

Tn(x) = Tn(x1 + · · ·+ xn−1) + Tnxn + Tn(xn+1 + · · · ).

The first term has norm bounded by Mn−1 = supα ‖Tα(x1 + · · ·+xn−1) ‖. We’ll choose the
central term so that

‖Tn(xn)‖ ≈ ‖Tn‖ ‖xn‖ >> Mn−1.

We’ll control the last term by choosing xn+1, xn+2, . . ., to satisfy∥∥∥∥∥
∞∑

k=n+1

xk

∥∥∥∥∥ ≤ 1
3
‖xn‖.

Time for some details. . .
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Suppose that x1, . . . , xn−1 and T1, . . . , Tn−1 have been chosen. Set

Mn−1 = sup
α∈A
‖Tα(x1 + · · ·+ xn−1) ‖.

Choose Tn so that
‖Tn‖ > 3 · 4n

(
Mn−1 + n

)
.

Next, choose xn to satisfy

‖xn‖ = 4−n and ‖Tn(xn)‖ > 2
3
‖Tn‖ ‖xn‖.

This completes the inductive step.
It now follows from our construction that

‖Tn(xn)‖ >
2
3
‖Tn‖ ‖xn‖ > 2

(
Mn−1 + n

)
,

and

‖Tn(xn+1 + · · · ) ‖ ≤ ‖Tn‖
∞∑

k=n+1

4−k

= ‖Tn‖ ·
1
3
· 4−n

=
1
3
‖Tn‖ ‖xn‖

<
1
2
‖Tn(xn)‖.

Thus,

‖Tn(x)‖ ≥ ‖Tn(xn)‖ − ‖Tn(x1 + · · ·+ xn−1) ‖ − ‖Tn(xn+1 + · · · ) ‖

>
1
2
‖Tn(xn)‖ − ‖Tn(x1 + · · ·+ xn−1) ‖

>
(
Mn−1 + n

)
− Mn−1 = n.

Corollary G.2. (The Banach-Steinhaus Theorem) Suppose that (Tn) is a sequence of
bounded linear operators mapping a complete normed linear space X into a normed linear
space Y and suppose that

T (x) = lim
n→∞

Tn(x)

exists in Y for each x ∈ X. Then T is a bounded linear operator.

Proof. It’s obvious that T is a well-defined linear map. All that remains is to prove that T
is continuous. But, because the sequence (Tn(x))∞n=1 converges for each x ∈ X, it must also
be bounded; that is, we must have

sup
n
‖Tn(x)‖ <∞ for each x ∈ X.

Thus, according to the Uniform Boundedness Theorem, we also have C = supn ‖Tn‖ < ∞
and this constant will serve as a bound for ‖T‖. Indeed, ‖Tn(x)‖ ≤ C‖x‖ for every x ∈ X
and so, by the continuity of the norm in Y ,

‖T (x)‖ = lim
n→∞

‖Tn(x)‖ ≤ C‖x‖

for every x ∈ X.
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The original proof of Theorem G.1, due to Banach and Steinhaus in 1927 [3], is lost to
us, I’m sorry to report. As the story goes, Saks, the referee of their paper, suggested an
alternate proof using the Baire category theorem, which is the proof most commonly given
these days; it is a staple in any modern introductory course on functional analysis.

I am told by Joe Diestel that their original manuscript is thought to have been lost
during the war. We’ll probably never know their original method of proof, but it’s a fair
guess that their proof was very similar to the one given above. This is not based on idle
conjecture: For one, the technique of the proof (often called a “gliding hump” argument)
was quite well-known to Banach and Steinhuas and had already surfaced in their earlier
work. More importantly, the technique was well-known to many authors at the time; in
particular, this is essentially the same proof given by Hausdorff in 1932.

What I find most curious is the fact that this proof resurfaces every few years (in the
Monthly, for example) under the label “a non-topological proof of the uniform boundedness
theorem.” See, for example, Gál [19] and Hennefeld [26]. Apparently, the proof using Baire’s
theorem (itself an elusive result) is memorable while the gliding hump proof (based solely
on first principles) is not.
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Appendix H

Approximation on Finite Sets

In this chapter we consider a question of computational interest: Because best approxima-
tions are often very hard to find, how might we approximate the best approximation? One
answer to this question lies in approximations over finite sets. Here’s the plan:

(1) Fix a finite subset Xm of [ a, b ] consisting of m distinct points a ≤ x1 < · · · < xm ≤ b,
and find the best approximation to f out of Pn considered as a subspace of C(Xm).
In other words, if we call the best approximation p∗n(Xm), then

max
1≤i≤m

|f(xi)− p∗n(Xm)(xi)| = min
p∈Pn

max
1≤i≤m

|f(xi)− p(xi)| ≡ En(f ;Xm).

(2) Argue that this process converges (in some sense) to the best approximation on all of
[ a, b ] provided that Xm “gets big” as m → ∞. In actual practice, there’s no need
to worry about p∗n(Xm) converging to p∗n (the best approximation on all of [ a, b ]);
rather, we will argue that En(f ;Xm)→ En(f) and appeal to “abstract nonsense.”

(3) Find an efficient strategy for carrying out items (1) and (2).

Remarks H.1.

1. If m ≤ n+ 1, then En(f ;Xm) = 0. That is, we can always find a polynomial p ∈ Pn
that agrees with f at n+ 1 (or fewer) points. (How?) Of course, p won’t be unique if
m < n+ 1. (Why?) In any case, we might as well assume that m ≥ n+ 2. In fact, as
we’ll see, the case m = n+ 2 is all that we really need to worry about.

2. If X ⊂ Y ⊂ [ a, b ], then En(f ;X) ≤ En(f ;Y ) ≤ En(f). Indeed, if p ∈ Pn is the best
approximation on Y , then

En(f ;X) ≤ max
x∈X
|f(x)− p(x)| ≤ max

x∈Y
|f(x)− p(x)| = En(f ;Y ).

Consequently, we expect En(f ;Xm) to increase to En(f) as Xm “gets big.”

Now if we were to repeat our earlier work on characterizing best approximations, re-
stricting ourselves to Xm everywhere, here’s what we’d get:

Theorem H.2. Let m ≥ n+ 2. Then,
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(i) p ∈ Pn is a best approximation to f on Xm if and only if f − p has an alternating set
containing n+ 2 points out of Xm; that is, f − p = ±En(f ;Xm), alternately, on Xm.

(ii) p∗n(Xm) is unique.

Next let’s see how this reduces our study to the case m = n+ 2.

Theorem H.3. Fix n, m ≥ n+ 2, and f ∈ C[ a, b ].

(i) If p∗n ∈ Pn is best on all of [ a, b ], then there is a subset X∗n+2 of [ a, b ], containing n+2
points, such that p∗n = p∗n(X∗n+2). Moreover, En(f ;Xn+2) ≤ En(f) = En(f ;X∗n+2)
for any other subset Xn+2 of [ a, b ], with equality if and only if p∗n(Xn+2) = p∗n.

(ii) If p∗n(Xm) ∈ Pn is best on Xm, then there is a subset X∗n+2 of Xm such that p∗n(Xm) =
p∗n(X∗n+2) and En(f ;Xm) = En(f ;X∗n+2). For any other Xn+2 ⊂ Xm we have
En(f ;Xn+2) ≤ En(f ;X∗n+2) = En(f ;Xm), with equality if and only if p∗n(Xn+2) =
p∗n(Xm).

Proof. (i): Let X∗n+2 be an alternating set for f − p∗n over [ a, b ] containing exactly n + 2
points. Then, X∗n+2 is also an alternating set for f − p∗n over X∗n+2. That is, for x ∈ X∗n+2,

±(f(x)− p∗n(x)) = En(f) = max
y∈X∗n+2

|f(y)− p∗n(y)|.

So, by uniqueness of best approximations on X∗n+2, we must have p∗n = p∗n(X∗n+2) and
En(f) = En(f ;X∗n+2). The second assertion follows from a similar argument using the
uniqueness of p∗n on [ a, b ].

(ii): This is just (i) with [ a, b ] replaced everywhere by Xm.

Here’s the point: Through some as yet undisclosed method, we choose Xm with m ≥ n+2
(in fact, m >> n+2) such that En(f ;Xm) ≤ En(f) ≤ En(f ;Xm)+ε, and then we search for
the “best” Xn+2 ⊂ Xm, meaning the largest value of En(f ;Xn+2). We then take p∗n(Xn+2)
as an approximation for p∗n. As we’ll see momentarily, p∗n(Xn+2) can be computed directly
and explicitly.

Now suppose that the elements of Xn+2 are a ≤ x0 < x1 < · · · < xn+1 ≤ b, let
p = p∗n(Xn+2) be p(x) = a0 + a1x+ · · ·+ anx

n, and let

E = En(f ;Xn+2) = max
0≤i≤n+1

|f(xi)− p(xi)|.

In order to compute p and E, we use the fact that f(xi) − p(xi) = ±E, alternately, and
write (for instance)

f(x0) = E + p(x0)
f(x1) = −E + p(x1)

...
f(xn+1) = (−1)n+1E + p(xn+1)

(H.1)
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(where the “E column” might, instead, read −E, E, . . ., (−1)nE). That is, in order to find
p and E, we need to solve a system of n + 2 linear equations in the n + 2 unknowns E,
a0, . . . , an. The determinant of this system is (up to sign)∣∣∣∣∣∣∣∣

1 1 x0 · · · xn0
−1 1 x1 · · · xn1

...
...

. . .
...

(−1)n+1 1 xn · · · xnn

∣∣∣∣∣∣∣∣ = A0 +A1 + · · ·+An+1 > 0,

where we have expanded by cofactors along the first column and have used the fact that each
minor Ak is a Vandermonde determinant (and hence each Ak > 0). If we apply Cramer’s
rule to find E we get

E =
f(x0)A0 − f(x1)A1 + · · ·+ (−1)n+1f(xn+1)An+1

A0 +A1 + · · ·+An+1

= λ0f(x0)− λ1f(x1) + · · ·+ (−1)n+1λn+1f(xn+1),

where λi > 0 and
∑n+1
i=0 λ1 = 1. Moreover, the λi satisfy

∑n+1
i=0 (−1)iλiq(xi) = 0 for every

polynomial q ∈ Pn because E = En(q;Xn+2) = 0 for polynomials of degree at most n (and
because Cramer’s rule supplies the same coefficients for all f).

It may be instructive to see a more explicit solution to this problem. For this, recall
that because we have n+ 2 points we may interpolate exactly out of Pn+1. Given this, our
original problem can be rephrased quite succinctly.

Let p be the (unique) polynomial in Pn+1 satisfying p(xi) = f(xi), i = 0, 1, . . . , n + 1,
and let e be the (unique) polynomial in Pn+1 satisfying e(xi) = (−1)i, i = 0, 1, . . . , n + 1.
If it is possible to find a scalar λ so that p − λe ∈ Pn, then p − λe = p∗n(Xn+2) and
|λ| = En(f ;Xn+2). Why? Because f − (p − λe) = λe = ±λ, alternately, on Xn+2 and so
|λ| = max x∈Xn+2 |f(x)− (p(x)− λe(x))|. Thus, we need to compare leading coefficients of
p and e.

Now if p has degree less than n + 1, then p = p∗n(Xn+2) and En(f ;Xn+2) = 0. Thus,
λ = 0 would do nicely in this case. Otherwise, p has degree exactly n+ 1 and the question
is whether e does too. Setting W (x) =

∏n+1
i=0 (x− xi), we have

e(x) =
n+1∑
i=0

(−1)i

W ′(xi)
· W (x)

(x− xi)
,

and so the leading coefficient of e is
∑n+1
i=0 (−1)i/W ′(xi). We’ll be done if we can convince

ourselves that this is nonzero. But

W ′(xi) =
∏
j 6=i

(xi − xj) = (−1)n−i+1
i−1∏
j=0

(xi − xj)
n+1∏
j=i+1

(xj − xi),

hence (−1)i/W ′(xi) is (nonzero and) of constant sign (−1)n+1. Finally, writing

p(x) =
n+1∑
i=0

f(xi)
W ′(xi)

· W (x)
(x− xi)

,

we see that p has leading coefficient
∑n+1
i=0 f(xi)/W ′(xi), making it easy to find the value

of λ.
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Conclusion. p∗n(Xn+2) = p− λe, where

λ =
∑n+1
i=0 f(xi)/W ′(xi)∑n+1
i=0 (−1)i/W ′(xi)

=
n+1∑
i=0

(−1)iλif(xi)

and

λi =
1/|W ′(xi)|∑n+1
j=0 1/|W ′(xj)|

,

and |λ| = En(f ;Xn+2). Moreover,
∑n+1
i=0 (−1)iλiq(xi) = 0 for every q ∈ Pn.

Example H.4. Find the best linear approximation to f(x) = x2 on X4 = {0, 1/3, 2/3, 1} ⊂
[ 0, 1 ].

Solution. We seek p(x) = a0 +a1x and we need only consider subsets of X4 of size 1+2 = 3.
There are four:

X4,1 = {0, 1/3, 2/3}, X4,2 = {0, 1/3, 1}, X4,3 = {0, 2/3, 1}, X4,4 = {1/3, 2/3, 1}.

In each case we find a p and a λ (= E in our earlier notation). For instance, in the case of
X4,2 we would solve the system of equations f(x) = ±λ+ p(x) for x = 0, 1/3, 1.

0 = λ(2) + a0
1
9 = −λ(2) + a0 + 1

3a1

1 = λ(2) + a0 + a1

=⇒
λ(2) = 1

9
a0 = − 1

9
a1 = 1

In the other three cases you would find that λ(1) = 1/18, λ(3) = 1/9, and λ(4) = 1/18.
Because we need the largest λ, we’re done: X4,2 (or X4,3) works, and p∗1(X4)(x) = x− 1/9.
(Recall that the best approximation on all of [ 0, 1 ] is p∗1(x) = x− 1/8.)

Where does this leave us? We still need to know that there is some hope of finding an
initial set Xm with En(f)− ε ≤ En(f ;Xm) ≤ En(f), and we need a more efficient means of
searching through the

(
m
n+2

)
subsets Xn+2 ⊂ Xm. In order to attack the problem of finding

an initial Xm, we’ll need a few classical inequalities. We won’t directly attack the second
problem; instead, we’ll outline an algorithm that begins with an initial set X0

n+2, containing
exactly n + 2 points, which is then “improved” to some X1

n+2 by changing only a single
point.

Convergence of Approximations over Finite Sets

In order to simplify things here, we will make several assumptions: For one, we will consider
only approximation over the interval I = [−1, 1 ]. As before, we consider a fixed f ∈ C[−1, 1 ]
and a fixed integer n = 0, 1, 2, . . .. For each integer m ≥ 1 we choose a finite subset Xm ⊂ I,
consisting of m points −1 ≤ x1 < · · · < xm ≤ 1; in addition, we will assume that x1 = −1
and xm = 1. If we put

δm = max
x∈I

min
1≤i≤m

|x− xi| > 0,

then each x ∈ I is within δm of some xi. If Xm consists of equally spaced points, for
example, it’s easy to see that δm = 1/(m− 1).

Our goal is to prove
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Theorem H.5. If δm → 0, then En(f ;Xm)→ En(f).

And we would hope to accomplish this in such a way that δm is a measurable quantity,
depending on f , m, and a prescribed tolerance ε = En(f ;Xm)− En(f).

As a first step in this direction, let’s bring Markov’s inequality into the picture.

Lemma H.6. Suppose that τm ≡ δ2mn4/2 < 1. Then, for any p ∈ Pn, we have

(1) max−1≤x≤1 |p(x)| ≤ (1− τm)−1 max 1≤i≤m |p(xi)|, and

(2) ωp([−1, 1 ]; δm) ≤ δmn
2(1− τm)−1 max 1≤i≤m |p(xi)|.

Proof. (1): Take a in [−1, 1 ] with |p(a)| = ‖p‖. If a = ±1 ∈ Xm, we’re done (because
(1 − τm)−1 > 1). Otherwise, we’ll have −1 < a < 1 and p ′(a) = 0. Next, choose xi ∈ Xm

with |a− xi| ≤ δm and apply Taylor’s theorem:

p(xi) = p(a) + (xi − a) p ′(a) +
(xi − a)2

2
p ′′(c),

for some c in (−1, 1). Re-writing, we have

|p(a)| ≤ |p(xi)|+
δ2m
2
|p ′′(c)|.

And now we bring in Markov:

‖p‖ ≤ max
1≤i≤m

|p(xi)| +
δ2mn

4

2
‖p‖,

which is what we need.
(2): The real point here is that each p ∈ Pn is Lipschitz with constant n2‖p‖. Indeed,

|p(s)− p(t)| = |(s− t) p ′(c)| ≤ |s− t| ‖p ′ ‖ ≤ n2‖p‖ |s− t|

(from the mean value theorem and Markov’s inequality). Thus, ωp(δ) ≤ δn2‖p‖ and, com-
bining this with (1), we get

ωp(δm) ≤ δmn
2‖p‖ ≤ δmn

2(1− τm)−1 max
1≤i≤m

|p(xi)|.

Now we’re ready to compare En(f ;Xm) to En(f). Our result won’t be as good as Rivlin’s
(he uses a fancier version of Markov’s inequality), but it will be a bit easier to prove. As in
Lemma H.6, we’ll suppose that

τm =
δ2mn

4

2
< 1,

and we’ll set

∆m =
δmn

2

1− τm
.

[Note that as δm → 0 we also have τm → 0 and ∆m → 0.]

Theorem H.7. For f ∈ C[−1, 1 ],

En(f ;Xm) ≤ En(f) ≤ (1 + ∆m)En(f ;Xm) + ωf ([−1, 1 ]; δm) + ∆m ‖f‖.

Consequently, if δm → 0, then En(f ;Xm)→ En(f) (as m→∞).
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Proof. Let p = p∗n(Xm) ∈ Pn be the best approximation to f on Xm. Recall that

max
1≤i≤m

|f(xi)− p(xi)| = En(f ;Xm) ≤ En(f) ≤ ‖f − p‖.

Our plan is to estimate ‖f − p‖.
Let x ∈ [−1, 1 ] and choose xi ∈ Xm with |x− xi| ≤ δm. Then,

|f(x)− p(x)| ≤ |f(x)− f(xi)|+ |f(xi)− p(xi)|+ |p(xi)− p(x)|
≤ ωf (δm) + En(f ;Xm) + ωp(δm)
≤ ωf (δm) + En(f ;Xm) + ∆m max

1≤i≤m
|p(xi)|,

where we’ve used (2) from Lemma H.6 to estimate ωp(δm). All that remains is to revise this
last estimate, eliminating reference to p. For this we use the triangle inequality again:

max
1≤i≤m

|p(xi)| ≤ max
1≤i≤m

|f(xi)− p(xi)| + max
1≤i≤m

|f(xi)|

≤ En(f ;Xm) + ‖f‖.

Putting all the pieces together gives us our result:

En(f) ≤ ωf (δm) + En(f ;Xm) + ∆m

[
En(f ;Xm) + ‖f‖

]
.

As Rivlin points out, it is quite possible to give a lower bound on m in the case of, say,
equally spaced points, which will give En(f ;Xm) ≤ En(f) ≤ En(f ;Xm) + ε, but this is
surely an inefficient approach to the problem. Instead, we’ll discuss the one point exchange
algorithm.

The One Point Exchange Algorithm

We’re given f ∈ C[−1, 1 ], n, and ε > 0.

1. Pick a starting “reference” Xn+2. A convenient choice is the set xi = cos
(
n+1−i
n+1 π

)
,

i = 0, 1, . . . , n+1. These are the “peak points” of Tn+1; that is, Tn+1(xi) = (−1)n+1−i

(and so Tn+1 is the polynomial e from our Conclusion on page 146).

2. Find p = p∗n(Xn+2) and λ (by solving a system of linear equations). Recall that

|λ| = |f(xi)− p(xi)| ≤ ‖f − p∗‖ ≤ ‖f − p‖,

where p∗ is the best approximation to f on all of [−1, 1 ].

3. Find (approximately, if necessary) the “error function” e(x) = f(x) − p(x) and any
point η where |f(η)− p(η)| = ‖f − p‖. (According to Powell [43], this can be accom-
plished using “local quadratic fits.”)

4. Replace an appropriate xi by η so that the new reference set X ′n+2 = {x′1, x′2, . . .} has
the properties that f(x′i) − p(x′i) alternates in sign and that |f(x′i) − p(x′i)| ≥ |λ| for
all i. The new polynomial p′ = p∗n(X ′n+2) and new λ′ must then satisfy

|λ| = min
0≤i≤n+1

|f(x′i)− p(x′i)| ≤ max
0≤i≤n+1

|f(x′i)− p′(x′i)| = |λ′|.
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This is an observation due to de La Vallée Poussin: Because f−p alternates in sign on
an alternating set for f−p′, it follows that f−p′ increases the minimum error over this
set. (See Theorem 4.9 for a precise statement.) Again according to Powell [43], the new
p′ and λ′ can be found quickly through matrix “updating” techniques. (Because we’ve
only changed one of the xi, only one row of the matrix (H.1) needs to be changed.)

5. The new λ′ satisfies |λ′| ≤ ‖f − p∗‖ ≤ ‖f − p′‖, and the calculation stops when

‖f − p′‖ − |λ′| = |f(η′)− p′(η′)| − |λ′| < ε.
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